Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
SHEN Qing, HUANG Fei, CHENG Xiao-li, et al. On Characteristics of Upper Atmosphere Aerodynamics of Flying Vehicles[J]. PHYSICS OF GASES, 2021, 6(1): 1-9. DOI: 10.19527/j.cnki.2096-1642.0900
Citation: SHEN Qing, HUANG Fei, CHENG Xiao-li, et al. On Characteristics of Upper Atmosphere Aerodynamics of Flying Vehicles[J]. PHYSICS OF GASES, 2021, 6(1): 1-9. DOI: 10.19527/j.cnki.2096-1642.0900

On Characteristics of Upper Atmosphere Aerodynamics of Flying Vehicles

More Information
  • Received Date: December 10, 2020
  • Revised Date: December 17, 2020
  • Published Date: January 19, 2021
  • In order to gain the understanding on aerodynamics of flying vehicles in the upper atmosphere(100~300 km), aerodynamic characteristics of typical aerospace vehicles in this space have been analyzed, and a preliminary understanding on the key factors of the upper atmosphere aerodynamics has been obtained. The gas flow over objects in the upper atmosphere falls into the free-molecular flow regime due to its extremely rarefied air stream. The aerodynamic force of a typical vehicle with an upstream flow deploying area of 1 m2 is at the order of 1 mN in the range of altitudes from 100 to 200 km, and it is much smaller than 1 mN at altitudes close to 300 km. Generally, the lift-to-drag ratio of space vehicles flying in the upper atmosphere is smaller than 1. However, it can be augmented by decreasing the accommodation coefficient in gas-surface-interaction. In exploration calculation, the lift-to-drag ratio can be larger than 1 when the accommodation coefficient is about 0.2, which indicates that the upper atmosphere zone between 100 and 200 km can be utilized for flying vehicles in terms of aerodynamic force. Therefore, it is meaningful to carry out the upper atmosphere aerodynamics research for the development of upper atmosphere vehicles.
  • [1]
    张海林, 周林, 马骁, 等. 临近空间飞行器发展现状及军事应用研究[J]. 飞航导弹, 2014, 7: 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201407003.htm

    Zhang H L, Zhou L, Ma X, et al. Vehicles in near space: development and military applications[J]. Aerod-ynamic Missile Journal, 2014, 7: 3-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201407003.htm
    [2]
    Mitra S K. The upper atmosphere[M]. Calcutta: The Royal Asiatic Society of Bengal Press, 1947: 1-5.
    [3]
    唐绍锋, 张静. 世界主要空天飞行器研制情况及未来发展趋势[J]. 国际太空, 2017, 10: 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201710007.htm

    Tang S F, Zhang J. Review of the primary aerospace vehicles in the world: present research and future deve-lopment[J]. Space International, 2017, 10: 30-37(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201710007.htm
    [4]
    徐慨, 陈霄, 周本文, 等. 国外航天侦察卫星的现状与发展[J]. 信息通信, 2015, 3: 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201503048.htm

    Xu K, Chen X, Zhou B W, et al. Present situation and development of foreign space reconnaissance satellite[J]. Information & Communications, 2015, 3: 76-79(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201503048.htm
    [5]
    Paez C. The development of the X-37 Reentry Vehicle[R]. AIAA 2004-4186, 2004.
    [6]
    孙宗祥, 唐志共, 陈喜兰, 等. X-37B的发展现状及空气动力技术综述[J]. 实验流体力学, 2015, 29(1): 1-14, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201501001.htm

    Sun Z X, Tang Z G, Chen X L, et al. Review of the state-of-art and aerodynamic technology of X-37B[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 1-14, 24(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201501001.htm
    [7]
    Kazutaka Nishiyama, Air breathing ion engine con-cept[C]. 54th International Astronautical Congress of the International Astronautical Federation, Bremen, 2003.
    [8]
    Tagawa M, Yokota K, Nishiyama K, et al. Experimental study of air breathing ion engine using laser detonation beam source[J]. Journal of Propulsion and Power, 2013, 29(3): 501-506. DOI: 10.2514/1.B34530
    [9]
    Xu J Y, Wu Z W, Chen P, et al. Parametric study of an air-breathing electric propulsion for near-space vehicles[J]. Journal of Propulsion and Power, 2018, 34(5): 1109-1115. DOI: 10.2514/1.B36770
    [10]
    Ivanov M S, Markelov G N, Gimelshein S F, et al. High-altitude capsule aerodynamics with real gas effects[J]. Journal of Spacecraft and Rockets, 1998, 35(1): 16-22. DOI: 10.2514/3.26992
    [11]
    黄飞, 赵波, 程晓丽, 等. 返回器高空稀薄气动特性的真实气体效应研究[J]. 宇航学报, 2014, 35(3): 283-290. DOI: 10.3873/j.issn.1000-1328.2014.03.006

    Huang F, Zhao B, Cheng X L, et al. Real gas effects of reentry vehicle aerodynamics under hyper-sonic rarefied condition[J]. Journal of Astronautics, 2014, 35(3): 283-290(in Chinese). DOI: 10.3873/j.issn.1000-1328.2014.03.006
    [12]
    Moss J N, Glass C E, Greene F A. DSMC simulations of Apollo capsule aerodynamics for hypersonic rarefied conditions[R]. AIAA 2006-3577, 2006.
    [13]
    Moss J N, Glass C E, Greene F A. Blunt body aerodynamics for hypersonic low density flows[C]. Proceedings of the 25th Symposium on Rarefied Gas Dynamics. Saint-Petersburg, Russia: Siberian Branch of the Russian Academy of Sciences, 2006: 753-758.
    [14]
    Hillje E R. Entry flight aerodynamics from Apollo mission AS-202[R]. NASA TN D-4185, 1967.
    [15]
    Blanchard R C, Larman K T, Moats C D. Rarefied-flow shuttle aerodynamics flight model[J]. Journal of Space-craft and Rockets, 1994, 31(4): 550-556. DOI: 10.2514/3.26477
    [16]
    Marcos F A, Wise J O, Kendra M J, et al. Advances in satellite drag modeling[R]. AIAA 2004-1254, 2004.
    [17]
    Koppenwallner G. Comment on special section: new perspectives on the satellite drag environments of Earth, Mars, and Venus[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1324-1327. DOI: 10.2514/1.37539
    [18]
    Storz M F, Bowman B R, Branson M J I, et al. High accuracy satellite drag model[R]. AIAA 2002-4886, 2002.
    [19]
    Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. London: Oxford University Press, 1994: 438-451.
    [20]
    沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003.

    Shen Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003(in Chinsese).
    [21]
    Borgnakke C, Larsen P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[J]. Journal of Computational Physics, 1975, 18(4): 405-420. DOI: 10.1016/0021-9991(75)90094-7
    [22]
    黄飞, 赵波, 程晓丽, 等. 低轨卫星的气动特性预测与分析[J]. 空间科学学报, 2015, 35(1): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB201501009.htm

    Huang F, Zhao B, Cheng X L, et al. Numerical investigation of aerodynamics on low earth orbit satellite[J]. Chinese Journal of Space Science, 2015, 35(1): 69-76(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB201501009.htm
    [23]
    Porodnov B T, Suetin P E, Borisov S F, et al. Experimental investigation of rarefied gas flow in different channels[J]. Journal of Fluid Mechanics, 1974, 64(3): 417-438. DOI: 10.1017/S0022112074002485
    [24]
    Seidl M, Steinheil E. Measurement of momentum accommodation coefficients on surfaces characterized by auger spectroscopy[C]. Proceedings of the 9th International Sy-mposium on Rarefied Gas Dynamics, Germany, 1974.
    [25]
    Thomas L B, Lord R G. Comparative measurements of tangential momentum and thermal accommodations on poli-shed and on roughened steel spheres[A]//Karamcheti A. Rarefied Gas Dynamics[M]. Amsterdam: Elsevier, 1974: 405-412.
    [26]
    Tekasakul P, Bentz J A, Tompson R V, et al. The spinning rotor gauge: measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients[J]. Journal of Vacuum Science & Technology A, 1996, 14(5): 2946-2952. DOI: 10.1116/1.580249
    [27]
    Gronych T, Ulman R, Peksa L, et al. Measurements of the relative momentum accommodation coefficient for different gases with a viscosity vacuum gauge[J]. Vacuum, 2004, 73(2): 275-279. http://www.sciencedirect.com/science/article/pii/S0042207X03002446

Catalog

    Article Metrics

    Article views (196) PDF downloads (22) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return