Citation: | SHEN Qing, HUANG Fei, CHENG Xiao-li, et al. On Characteristics of Upper Atmosphere Aerodynamics of Flying Vehicles[J]. PHYSICS OF GASES, 2021, 6(1): 1-9. DOI: 10.19527/j.cnki.2096-1642.0900 |
[1] |
张海林, 周林, 马骁, 等. 临近空间飞行器发展现状及军事应用研究[J]. 飞航导弹, 2014, 7: 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201407003.htm
Zhang H L, Zhou L, Ma X, et al. Vehicles in near space: development and military applications[J]. Aerod-ynamic Missile Journal, 2014, 7: 3-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201407003.htm
|
[2] |
Mitra S K. The upper atmosphere[M]. Calcutta: The Royal Asiatic Society of Bengal Press, 1947: 1-5.
|
[3] |
唐绍锋, 张静. 世界主要空天飞行器研制情况及未来发展趋势[J]. 国际太空, 2017, 10: 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201710007.htm
Tang S F, Zhang J. Review of the primary aerospace vehicles in the world: present research and future deve-lopment[J]. Space International, 2017, 10: 30-37(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201710007.htm
|
[4] |
徐慨, 陈霄, 周本文, 等. 国外航天侦察卫星的现状与发展[J]. 信息通信, 2015, 3: 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201503048.htm
Xu K, Chen X, Zhou B W, et al. Present situation and development of foreign space reconnaissance satellite[J]. Information & Communications, 2015, 3: 76-79(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201503048.htm
|
[5] |
Paez C. The development of the X-37 Reentry Vehicle[R]. AIAA 2004-4186, 2004.
|
[6] |
孙宗祥, 唐志共, 陈喜兰, 等. X-37B的发展现状及空气动力技术综述[J]. 实验流体力学, 2015, 29(1): 1-14, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201501001.htm
Sun Z X, Tang Z G, Chen X L, et al. Review of the state-of-art and aerodynamic technology of X-37B[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 1-14, 24(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201501001.htm
|
[7] |
Kazutaka Nishiyama, Air breathing ion engine con-cept[C]. 54th International Astronautical Congress of the International Astronautical Federation, Bremen, 2003.
|
[8] |
Tagawa M, Yokota K, Nishiyama K, et al. Experimental study of air breathing ion engine using laser detonation beam source[J]. Journal of Propulsion and Power, 2013, 29(3): 501-506. DOI: 10.2514/1.B34530
|
[9] |
Xu J Y, Wu Z W, Chen P, et al. Parametric study of an air-breathing electric propulsion for near-space vehicles[J]. Journal of Propulsion and Power, 2018, 34(5): 1109-1115. DOI: 10.2514/1.B36770
|
[10] |
Ivanov M S, Markelov G N, Gimelshein S F, et al. High-altitude capsule aerodynamics with real gas effects[J]. Journal of Spacecraft and Rockets, 1998, 35(1): 16-22. DOI: 10.2514/3.26992
|
[11] |
黄飞, 赵波, 程晓丽, 等. 返回器高空稀薄气动特性的真实气体效应研究[J]. 宇航学报, 2014, 35(3): 283-290. DOI: 10.3873/j.issn.1000-1328.2014.03.006
Huang F, Zhao B, Cheng X L, et al. Real gas effects of reentry vehicle aerodynamics under hyper-sonic rarefied condition[J]. Journal of Astronautics, 2014, 35(3): 283-290(in Chinese). DOI: 10.3873/j.issn.1000-1328.2014.03.006
|
[12] |
Moss J N, Glass C E, Greene F A. DSMC simulations of Apollo capsule aerodynamics for hypersonic rarefied conditions[R]. AIAA 2006-3577, 2006.
|
[13] |
Moss J N, Glass C E, Greene F A. Blunt body aerodynamics for hypersonic low density flows[C]. Proceedings of the 25th Symposium on Rarefied Gas Dynamics. Saint-Petersburg, Russia: Siberian Branch of the Russian Academy of Sciences, 2006: 753-758.
|
[14] |
Hillje E R. Entry flight aerodynamics from Apollo mission AS-202[R]. NASA TN D-4185, 1967.
|
[15] |
Blanchard R C, Larman K T, Moats C D. Rarefied-flow shuttle aerodynamics flight model[J]. Journal of Space-craft and Rockets, 1994, 31(4): 550-556. DOI: 10.2514/3.26477
|
[16] |
Marcos F A, Wise J O, Kendra M J, et al. Advances in satellite drag modeling[R]. AIAA 2004-1254, 2004.
|
[17] |
Koppenwallner G. Comment on special section: new perspectives on the satellite drag environments of Earth, Mars, and Venus[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1324-1327. DOI: 10.2514/1.37539
|
[18] |
Storz M F, Bowman B R, Branson M J I, et al. High accuracy satellite drag model[R]. AIAA 2002-4886, 2002.
|
[19] |
Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. London: Oxford University Press, 1994: 438-451.
|
[20] |
沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003.
Shen Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003(in Chinsese).
|
[21] |
Borgnakke C, Larsen P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[J]. Journal of Computational Physics, 1975, 18(4): 405-420. DOI: 10.1016/0021-9991(75)90094-7
|
[22] |
黄飞, 赵波, 程晓丽, 等. 低轨卫星的气动特性预测与分析[J]. 空间科学学报, 2015, 35(1): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB201501009.htm
Huang F, Zhao B, Cheng X L, et al. Numerical investigation of aerodynamics on low earth orbit satellite[J]. Chinese Journal of Space Science, 2015, 35(1): 69-76(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB201501009.htm
|
[23] |
Porodnov B T, Suetin P E, Borisov S F, et al. Experimental investigation of rarefied gas flow in different channels[J]. Journal of Fluid Mechanics, 1974, 64(3): 417-438. DOI: 10.1017/S0022112074002485
|
[24] |
Seidl M, Steinheil E. Measurement of momentum accommodation coefficients on surfaces characterized by auger spectroscopy[C]. Proceedings of the 9th International Sy-mposium on Rarefied Gas Dynamics, Germany, 1974.
|
[25] |
Thomas L B, Lord R G. Comparative measurements of tangential momentum and thermal accommodations on poli-shed and on roughened steel spheres[A]//Karamcheti A. Rarefied Gas Dynamics[M]. Amsterdam: Elsevier, 1974: 405-412.
|
[26] |
Tekasakul P, Bentz J A, Tompson R V, et al. The spinning rotor gauge: measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients[J]. Journal of Vacuum Science & Technology A, 1996, 14(5): 2946-2952. DOI: 10.1116/1.580249
|
[27] |
Gronych T, Ulman R, Peksa L, et al. Measurements of the relative momentum accommodation coefficient for different gases with a viscosity vacuum gauge[J]. Vacuum, 2004, 73(2): 275-279. http://www.sciencedirect.com/science/article/pii/S0042207X03002446
|