Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
ZHAO Ling, LI Wen-hao, YUE Hui, et al. Thermal Structure Test of Full-Scale Cabin Component in 200 MW High Temperature Tunnel[J]. PHYSICS OF GASES, 2021, 6(5): 44-50. DOI: 10.19527/j.cnki.2096-1642.0889
Citation: ZHAO Ling, LI Wen-hao, YUE Hui, et al. Thermal Structure Test of Full-Scale Cabin Component in 200 MW High Temperature Tunnel[J]. PHYSICS OF GASES, 2021, 6(5): 44-50. DOI: 10.19527/j.cnki.2096-1642.0889

Thermal Structure Test of Full-Scale Cabin Component in 200 MW High Temperature Tunnel

More Information
  • Received Date: November 30, 2020
  • Revised Date: January 13, 2021
  • A thermal structure and thermal match test of a full-scale cabin component was conducted in a 200 MW high temperature combustion-heated tunnel. New test methods were developed for some key techniques like tunnel state adjustment, effect of test medium and long term heat flow measurement. New methods of combustion-heated tunnel operation design and equivalent cold-wall heat-flux correction considering combustion gas effects were applied. Long term heat flow evaluation method was also used to simulated variable heat flux boundary conditions at the same test trajectory. The technology method was applied to a full-scale cabin component test successfully. The experiment results show that the aero-heating environments were exactly simulated and the technique was effective and feasible.

  • [1]
    Frank K L, Marren D E. 先进高超声速试验设备[M]. 柳森, 黄训铭, 译. 北京: 航空工业出版社, 2015.

    Frank K L, Marren D E. Advanced hypersonic test facili-ties[M]. Liu S, Huang X M, trans. Beijing: Aviation Industry Press, 2015(in Chinese).
    [2]
    Smith D M, Younker T. Comparative ablation testing of carbon phenolic TPS materials in the AEDC-H1 arcjet[R]. AIAA 2005-3263, 2005.
    [3]
    Gokcen T, Stewart D. Computational analysis of semi-elliptical nozzle arc-jet experiments: calibration plate and wing leading edge[R]. AIAA 2005-4887, 2005.
    [4]
    张松贺, 杨远剑, 王茂刚, 等. 电弧风洞热/透波联合试验技术研究及应用[J]. 空气动力学学报, 2017, 35(5): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201701021.htm

    Zhang S H, Yang Y J, Wang M G, et al. Studies and applications of thermal/wave-transmission test technique in arc-heated wind tunnel[J]. Acta Aerodynamica Sinica, 2017, 35(5): 141-145(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201701021.htm
    [5]
    欧东斌, 陈连忠. 大尺寸结构部件电弧风洞烧蚀试验技术[J]. 空气动力学学报, 2015, 33(5): 661-666. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201505013.htm

    Ou D B, Chen L Z. Ablation test technique of large scale structure component in arc-heated wind tunnel[J]. Acta Aerodynamica Sinica, 2015, 33(5): 661-666(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201505013.htm
    [6]
    Avery D E, Kerr P A, Wieting A R. Experimental aerodynamic heating to simulated shuttle tiles[R]. NASA-TM-84654, 1983.
    [7]
    Zhao L, Zhang X, Qi B, et al. An experimental and computational study of freestream condition in an oxygen/oil gas-jet facility[C]. 2018 Asia-Pacific International Symposium on Aerospace Technology, Chengdu, Sprin-ger, 2018.
    [8]
    Hunt L R, Shideler J L. Performance of LI-1542 Reusable surface insulation in hypersonic stream[R]. NASA TN-D-8150, 1976.
    [9]
    Rogers R, Capriotti D, Guy R. Experimental supersonic combustion research at NASA Langley[R]. AIAA 98-2506, 1998.
    [10]
    姜贵庆, 刘连元. 高速气流传热与烧蚀热防护[M]. 北京: 国防工业出版社, 2003.

    Jiang G Q, Liu L Y. Heat transfer of hypersonic gas and ablation thermal protection[M]. Beijing: National Defense Industry Press, 2003(in Chinese).
    [11]
    王欣, 邹样辉. 氧气/煤油发动机燃气热物理参数及输运系数计算[J]. 火箭推进, 2017, 48(4): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201704007.htm

    Wang X, Zou Y H. Calculation of fuel gas thermodynamic parameters and transport coefficients for oxygen/kerosene engine[J]. Journal of Rocket Propulsion, 2017, 48(4): 34-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201704007.htm
    [12]
    张燕红, 杨凯威. 关于燃气流总焓的估算与分析[R]. WJH15-2189, 2005.

    Zhang Y H, Yang K W. Estimation method of total enthalpy for combustion-heated facility[R]. WJH15-2189, 2005(in Chinese).
    [13]
    Hightower T M, Olivares R A, Philippidis D. Thermal capacitance(slug) calorimeter theory including heat losses and other decaying processes[R]. MASA/TM-2008-215364, 2008.
    [14]
    齐斌. 高焓燃气射流光谱透过性特征实验研究[C]. 第七届全国温度测量与控制技术学术交流会议, 2015.

    Qi B. Spectrum characteristics of high enthalpy combustion-heated facility[C]. The 7th National Temperature Measurement and Control Technology, 2015(in Chinese).
    [15]
    潘兵. 基于带通滤波成像的高温数字图像相关方法[J]. 光学学报, 2011, 31(2): 0212001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201102012.htm

    Pan B. High-temperature digital image correlation method based on optical band-pass filtering imaging[J]. Acta Optica Sinica, 2011, 31(2): 0212001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201102012.htm
  • Related Articles

    [1]JIA Guangsen, JIN Xin, YAO Dapeng, CHEN Nong. Method for Identifying Heat Flux of Temperature-Sensitive Paint under High-Temperature Gas Radiation[J]. PHYSICS OF GASES, 2025, 10(1): 68-78. DOI: 10.19527/j.cnki.2096-1642.1116
    [2]ZHANG Hongjun, LI Haiqun, KANG Honglin, LUO Jinling. Experimental Study on the Influence of Gas Injection on Aerodynamic Heating[J]. PHYSICS OF GASES, 2024, 9(6): 74-82. DOI: 10.19527/j.cnki.2096-1642.1113
    [3]WANG Mu, CHEN Yang, WANG Wei, WEI Ping. Experiment for Heat Transport and Flow Structure of a Two-Layer Thermal Convection[J]. PHYSICS OF GASES, 2024, 9(5): 11-18. DOI: 10.19527/j.cnki.2096-1642.1066
    [4]ZHOU Kai, OU Dong-bin, ZHANG Shi-zhong, LI Jin-ping. Experimental and Numerical Simulation of Heat Transfer Characteristics for Heat Flux Sensors in Arc Heated Wind Tunnels[J]. PHYSICS OF GASES, 2022, 7(4): 83-90. DOI: 10.19527/j.cnki.2096-1642.0945
    [5]YU Ji-jun, DENG Dai-ying, LUO Xiao-guang, GAO Jun-jie, AI Bang-cheng. Multi-Scale Phenomena in Thermal Protection Materials Experienced Aero-Heating and Thermo-Ablative Modeling Forward Quantitative Analysis[J]. PHYSICS OF GASES, 2021, 6(4): 1-18. DOI: 10.19527/j.cnki.2096-1642.0928
    [6]FANG Fang, BAO Lin. A Modeling Theory of Peak Heating in Hypersonic Separation Reattachment Flow[J]. PHYSICS OF GASES, 2021, 6(1): 10-19. DOI: 10.19527/j.cnki.2096-1642.0837
    [7]LIU Xu, PENG Di, LIU Ying-zheng. Methods and Applications of Heat Flux Measurement Using TSP[J]. PHYSICS OF GASES, 2020, 5(5): 1-12. DOI: 10.19527/j.cnki.2096-1642.0872
    [8]YANG Xue-jun, SHEN Qing, YAO Yao, REN Yi-peng, ZHU Li. Mechanism of Convection Heating in Solid Rocket Tail Cabin[J]. PHYSICS OF GASES, 2019, 4(1): 8-15. DOI: 10.19527/j.cnki.2096-1642.0736
    [9]NIU Hai-bo, YI Shi-he, LIU Xiao-lin, LU Xiao-ge, HE Lin. Experimental Investigation of the Görtler Vortex and Heat Flux Distribution on the Compression Ramp Flow[J]. PHYSICS OF GASES, 2018, 3(5): 48-55. DOI: 10.19527/j.cnki.2096-1642.2018.05.006
    [10]DING Zhong-hang, WU Song-ping. Factors in Calculating Heat Flux on the Shoulder of Apollo Like Reentry Capsule[J]. PHYSICS OF GASES, 2017, 2(6): 54-63. DOI: 10.19527/j.cnki.2096-1642.2017.06.007
  • Cited by

    Periodical cited type(4)

    1. 乔文通,章洪涛,王少岩,张冰冰,杨小琮,富庆飞. 气体中心式气液同轴离心多喷嘴耦合喷雾特性研究. 推进技术. 2024(12): 186-198 .
    2. 罗楚养,蒋嘉瑞,程功,黄益民,蔡钰伟,李晓升. 空空导弹热防护性能测试技术研究现状. 装备环境工程. 2024(12): 58-70 .
    3. 李小艳,蔡巧言,石伟,刘杰平,赵玲,吕俊明. 重复使用运载器发动机喷流热环境. 气体物理. 2023(03): 55-63 . 本站查看
    4. 牟晓波,林峰,叶现楼,陈江,高燕. 风洞用高性能清水混凝土抗裂性能试验研究. 新型建筑材料. 2022(03): 50-53 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (120) PDF downloads (11) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return