Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Volume 7 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
HAN Xin, ZHANG Zi-jian, MA Kai-fu, LIU Yun-feng. Theoretical Prediction on the Nozzle Thrust of Scramjets[J]. PHYSICS OF GASES, 2022, 7(1): 1-8. doi: 10.19527/j.cnki.2096-1642.0888
Citation: HAN Xin, ZHANG Zi-jian, MA Kai-fu, LIU Yun-feng. Theoretical Prediction on the Nozzle Thrust of Scramjets[J]. PHYSICS OF GASES, 2022, 7(1): 1-8. doi: 10.19527/j.cnki.2096-1642.0888

Theoretical Prediction on the Nozzle Thrust of Scramjets

doi: 10.19527/j.cnki.2096-1642.0888
  • Received Date: 30 Nov 2020
  • Revised Date: 14 Dec 2020
  • A big progress has been made for scramjets in the past 60 years. However, whether it has enough thrust or not is not clear to date. In this paper, the thrust performance of the nozzle was analysed by using the isentropic expansion theory, because the thrust is mostly produced by the nozzle in scramjets. The parameters in the combustor were used as the boundary conditions. A dimensionless thrust equation was obtained by integrating the pressure along the nozzle wall. The key parameters and physical laws governing the thrust performance were discussed. The analysis results show that the supersonic combustion is good for producing higher thrust. The main way to get heavy thrust is to increase the combustion static pressure in the combustor. The analysis results are in good agreement with CFD results, which demonstrates its correctness.

     

  • loading
  • [1]
    Ferri A. Review of problems in application of supersonic combustion[J]. The Journal of the Royal Aeronautical Society, 1964, 68(645): 575-597. doi: 10.1017/S0368393100080391
    [2]
    Ferri A. Review of scramjet propulsion technology[J]. Journal of Aircraft, 1968, 5(1): 3-10. doi: 10.2514/3.43899
    [3]
    Ferri A. Mixing-controlled supersonic combustion[J]. Annual Review of Fluid Mechanics, 1973, 5: 301-338. doi: 10.1146/annurev.fl.05.010173.001505
    [4]
    Curran E T. Scramjet engines: the first forty years[J]. Journal of Propulsion and Power, 2001, 17(6): 1138-1148. doi: 10.2514/2.5875
    [5]
    Curran E T, Heiser W H, Pratt D T. Fluid phenomena in scramjet combustion systems[J]. Annual Review of Fluid Mechanics, 1996, 28: 323-360. doi: 10.1146/annurev.fl.28.010196.001543
    [6]
    Fry R S. A century of ramjet propulsion technology evolu-tion[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58. doi: 10.2514/1.9178
    [7]
    俞刚, 范学军. 超声速燃烧与高超声速推进[J]. 力学进展, 2013, 43(5): 449-471. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201305001.htm

    Yu G, Fan X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5): 449-471(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201305001.htm
    [8]
    王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6): 716-739. doi: 10.3321/j.issn:1000-0992.2009.06.011

    Wang Z G, Liang J H, Ding M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6): 716-739(in Chinese). doi: 10.3321/j.issn:1000-0992.2009.06.011
    [9]
    Urzay J. Supersonic combustion in air-breathing propul-sion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627. doi: 10.1146/annurev-fluid-122316-045217
    [10]
    Peebles C. Eleven seconds into the unknown: a history of the hyper-X program[M]. AIAA, 2011.
    [11]
    Tsien H S, Beilock M. Heat source in a uniform flow[J]. Journal of the Aeronautical Sciences, 1949: 756-756.
    [12]
    Birzer C, Doolan C J. Quasi-one-dimensional model of hydrogen-fueled scramjet combustors[J]. Journal of Propulsion and Power, 2009, 25(6): 1220-1225. doi: 10.2514/1.43716
    [13]
    O'Brien T F, Starkey R P, Lewis M J. Quasi-one-dimensional high-speed engine model with finite-rate chemistry[J]. Journal of Propulsion and Power, 2001, 17(6): 1366-1374. doi: 10.2514/2.5889
    [14]
    Vanyai T, Bricalli M, Brieschenk S, et al. Scramjet performance for ideal combustion processes[J]. Aerospace Science and Technology, 2018, 75: 215-226. doi: 10.1016/j.ast.2017.12.021
    [15]
    Riggins D W, Mcclinton C R, Rogers R C, et al. Investigation of scramjet injection strategies for high Mach number flows[J]. Journal of Propulsion and Power, 1995, 11(3): 409-418. doi: 10.2514/3.23859
    [16]
    Riggins D W, Mcclinton C R, Vitt P H. Thrust losses in hypersonic engines Part 1: Methodology[J]. Journal of Propulsion and Power, 1997, 13(2): 281-287. doi: 10.2514/2.5160
    [17]
    Sislian J P, Martens R P, Schwartzentruber T E, et al. Numerical simulation of a real shcramjet flowfield[J]. Journal of Propulsion and Power, 2006, 22(5): 1039-1048. doi: 10.2514/1.14895
    [18]
    Chan J, Sislian J P, Alexander D. Numerically simulated comparative performance of a scramjet and shcramjet at Mach 11[J]. Journal of Propulsion and Power, 2010, 26(5): 1125-1134. doi: 10.2514/1.48144
    [19]
    Alexander D C, Sislian J P. Computational study of the propulsive characteristics of a shcramjet engine[J]. Journal of Propulsion and Power, 2008, 24(1): 34-44. doi: 10.2514/1.29951
    [20]
    Wang Y W, Sislian J P. Numerical simulation of gaseous hydrocarbon fuel injection in a hypersonic inlet[J]. Journal of Propulsion and Power, 2010, 26(5): 1114-1124. doi: 10.2514/1.47741
    [21]
    Denman Z J, Chan W Y K, Brieschenk S, et al. Ignition experiments of hydrocarbons in a Mach 8 shape-transitioning scramjet engine[J]. Journal of Propulsion and Power, 2016, 32(6): 1462-1471. doi: 10.2514/1.B36099
    [22]
    Zhang Z J, Ma K F, Zhang W S, et al. Numerical investigation of a Mach 9 oblique detonation engine with fuel pre-injection[J]. Aerospace Science and Technology, 2020, 105: 106054. doi: 10.1016/j.ast.2020.106054
    [23]
    Ma K F, Zhang Z J, Liu Y F, et al. Aerodynamic principles of shock-induced combustion ramjet engines[J]. Aerospace Science and Technology, 2020, 103: 105901. doi: 10.1016/j.ast.2020.105901
    [24]
    Zhang Z J, Wen C Y, Zhang W S, et al. Formation of stabilized oblique detonation waves in a combustor[J]. Combustion and Flame, 2021, 223: 423-436. doi: 10.1016/j.combustflame.2020.09.034
    [25]
    沈欢, 张子健, 刘云峰, 等. 超燃冲压发动机推进性能理论分析[J]. 气体物理, 2018, 3(1): 12-19. doi: 10.19527/j.cnki.2096-1642.2018.01.002

    Shen H, Zhang Z J, Liu Y F, et al. Analysis on the propulsion performance of scramjet engine[J]. Physics of Gases, 2018, 3(1): 12-19(in Chinese). doi: 10.19527/j.cnki.2096-1642.2018.01.002
    [26]
    马凯夫, 张子健, 刘云峰, 等. 斜爆轰发动机流动机理分析[J]. 气体物理, 2019, 4(3): 1-10. doi: 10.19527/j.cnki.2096-1642.0750

    Ma K F, Zhang Z J, Liu Y F, et al. Flow mechanism of oblique detonation engines[J]. Physics of Gases, 2019, 4(3): 1-10(in Chinese). doi: 10.19527/j.cnki.2096-1642.0750
    [27]
    Menter F R. 2-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [28]
    Jachimowski C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combus-tion[J]. NASA TP-2791, 1988.
    [29]
    张子健. 斜爆轰推进理论、技术及其实验验证[D]. 北京: 中国科学院大学, 2020.

    Zhang Z J. Oblique detonation propulsion theory, technology and its experimental demonstration[D]. Beijing: University of Chinese Academy of Sciences, 2020(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (538) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return