Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
ZHANG Xing, HUANG Guo-wang, WU Shu-qun, et al. Experimental Study on Discharge Characteristics and Induced Airflow of Three-Electrode Coplanar Dielectric Barrier Discharge[J]. PHYSICS OF GASES, 2021, 6(2): 28-37. DOI: 10.19527/j.cnki.2096-1642.0840
Citation: ZHANG Xing, HUANG Guo-wang, WU Shu-qun, et al. Experimental Study on Discharge Characteristics and Induced Airflow of Three-Electrode Coplanar Dielectric Barrier Discharge[J]. PHYSICS OF GASES, 2021, 6(2): 28-37. DOI: 10.19527/j.cnki.2096-1642.0840

Experimental Study on Discharge Characteristics and Induced Airflow of Three-Electrode Coplanar Dielectric Barrier Discharge

More Information
  • Received Date: April 09, 2020
  • Revised Date: April 29, 2020
  • Published Date: March 19, 2021
  • Due to its fast response, wide excitation band, low power consumption and strong reliability, plasma flow control actuators are widely used in active flow control in aerospace field. This work demonstrated a plasma flow control actuator based on three-electrode coplanar dielectric barrier discharge (TCDBD). The effects of the electrode structure on the discharge characteristics and the induced airflow velocity were investigated. In addition, the comparison of the TCDBD actuator with the surface dielectric barrier discharge(SDBD) actuator and coplanar dielectric barrier discharge (CDBD) actuator was conducted. The results show that (1) As the applied AC voltage increases, the filamentary discharge starts first between the high voltage electrode and ground electrode, and then extends to the floating third electrode. (2) With the increase of the distance between the third electrode and the high voltage electrode, the airflow velocity induced by the TCDBD actuator drops from 2.4 m/s to 0 m/s. However, the effect of the width of the third electrode on the airflow speed is negligible. (3)Under the same external conditions, the airflow velocity induced by TCDBD is lower than that by SDBD but higher than that by CDBD.

  • [1]
    Zhang C, Ma Y Y, Kong F, et al. Atmospheric pressure plasmas and direct fluorination treatment of Al2O3-filled epoxy resin: A comparison of surface charge dissipation[J]. Surface and Coatings Technology, 2019, 362: 1-11. DOI: 10.1016/j.surfcoat.2019.01.081
    [2]
    Wu S Q, Cao Y, Lu X P. The state of the art of applications of atmospheric-pressure nonequilibrium plasma jets in dentistry[J]. IEEE Transactions on Plasma Science, 2016, 44(2): 134-151. DOI: 10.1109/TPS.2015.2506658
    [3]
    郝泽宇, 于红, 杨亮, 等. 大气压沿面介质阻挡放电流动控制影响因素研究[J]. 真空科学与技术学报, 2015, 35(7): 837-843. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201507009.htm

    Hao Z Y, Yu H, Yang L, et al. Experimental study of airflow control by surface dielectric barrier discharge at atmospheric pressure[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(7): 837-843(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201507009.htm
    [4]
    Zhang C, Huang B D, Luo Z B, et al. Atmospheric-pressure pulsed plasma actuators for flow control: shock wave and vorte characteristics[J]. Plasma Sources Science and Technology, 2019, 28(6): 064001. DOI: 10.1088/1361-6595/ab094c
    [5]
    吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502001.htm

    Wu Y, Li Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502001.htm
    [6]
    翟琪, 张正科, 蔡晋生, 等. 等离子体激励翼型分离流动控制数值模拟[J]. 气体物理, 2016, 1(2): 22-28. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e151cfc6-0b32-442b-8d3d-cd5b7691bec4

    Zhai Q, Zhang Z K, Cai J S, et al. Numerical simulation of plasma control of separated flows over airfoils[J]. Physics of Gases, 2016, 1(2): 22-28(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e151cfc6-0b32-442b-8d3d-cd5b7691bec4
    [7]
    Shang J J, 严红, 刘凡. 等离子体激励器在航空航天工程中的应用前景[J]. 气体物理, 2018, 3(2): 1-12. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=ee8b0b49-bad8-4f85-8c5b-1a5eca773d4b

    Shang J J, Yan H, Liu F. A prospective of plasma actuators in aerospace engineering[J]. Physics of Gases, 2018, 3(2): 1-12(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=ee8b0b49-bad8-4f85-8c5b-1a5eca773d4b
    [8]
    Jong A D, Bijl H. Corner-type plasma actuators for cavity flow-induced noise control[J]. AIAA Journal, 2015, 52(1): 33-42. DOI: 10.2514/1.J051815
    [9]
    史志伟, 范本根. 不同结构等离子体激励器的流场特性实验研究[J]. 航空学报, 2011, 32(9): 1583-1589. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201109003.htm

    Shi Z W, Fan B G. Experimental study on flow field characteristics of different plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1583-1589(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201109003.htm
    [10]
    Forte M, Jolibois J, Pons J, et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control[J]. Experiments in Fluids, 2007, 43(6): 917-928. DOI: 10.1007/s00348-007-0362-7
    [11]
    吴阳阳, 贾敏, 王蔚龙, 等. 新型介质阻挡放电等离子体激励器的放电与诱导流动特性实验[J]. 电工技术学报, 2016, 31(24): 45-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201624005.htm

    Wu Y Y, Jia M, Wang W L, et al. Experimental research on the discharge and induced flow characteristics of a new dielectric barrier discharge plasma actuator[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 45-53(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201624005.htm
    [12]
    Hao J N, Tian B L, Wang Y L, et al. Dielectric barrier plasma dynamics for active aerodynamic flow control[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(2): 345-353. DOI: 10.1007/s11433-013-5164-8
    [13]
    Moreau E, Sosa R, Artana G. Electric wind produced by surface plasma actuators: a new dielectric barrier dischar-ge based on a three-electrode geometry[J]. Journal of Physics D Applied Physics, 2008, 41(11): 115204-115212. DOI: 10.1088/0022-3727/41/11/115204
    [14]
    Wu S Q, Huang G W, Cheng W X, et al. The influences of the electrode dimension and the dielectric material on the breakdown characteristics of coplanar dielectric barrier discharge in ambient air[J]. Plasma Processes and Polymers, 2017, 14(12): e1700112. DOI: 10.1002/ppap.201700112
    [15]
    史曜炜, 周若瑜, 崔行磊, 等. 不同电源激励下共面介质阻挡放电特性实验[J]. 电工技术学报, 2018, 33(22): 5371-5380. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201822025.htm

    Shi Y W, Zhou R Y, Cui X L, et al. Experimental investigation on characteristics of coplanar dielectric barrier discharge driven by different power supplies[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5371-5380(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201822025.htm
    [16]
    Stepanova V, Kelar J, Galmiz O, et al. A real homoge-neity verification of plasma generated by diffuse coplanar surface barrier discharge in ambient air at atmospheric pressure[J]. Contributions to Plasma Physics, 2017, 57(4): 182-189. DOI: 10.1002/ctpp.201600093
    [17]
    Opaits D F, Shneider M N, Miles R B, et al. Surface charge in dielectric barrier discharge plasma actuators[J]. Physics of Plasmas, 2008, 15(7): 073505. DOI: 10.1063/1.2955767
    [18]
    Paniel E, Rabat H, Hong D P. Relative residual charge distribution and the corresponding discharge image of a surface DBD[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2696-2697. DOI: 10.1109/TPS.2014.2338494
    [19]
    车学科, 聂万胜, 丰松江, 等. 介质阻隔面放电的结构参数[J]. 高电压技术, 2009, 35(9): 2213-2219. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200909031.htm

    Che X K, Nie W S, Feng S J, et al. Geometrical parameter of dielectric barrier surface discharge[J]. High Voltage Engineering, 2009, 35(9): 2213-2219(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200909031.htm
    [20]
    赵小虎, 李应红, 李益文, 等. 介质阻挡放电等离子体气动激励的动量特性[J]. 航空动力学报, 2010, 25(8): 1791-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201008018.htm

    Zhao X H, Li Y H, Li Y W, et al. Momentum characteristic of dielectric barrier discharge plasma aerodynamic actuation[J]. Journal of Aerospace Power, 2010, 25(8): 1791-1798(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201008018.htm
    [21]
    姜慧, 邵涛, 章程, 等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报, 2017, 32(2): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201702004.htm

    Jiang H, Shao T, Zhang C, et al. Distribution characteristics of nanosecond-pulsed surface dielectric barrier discharge at different electrode gaps[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 33-42(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201702004.htm
  • Cited by

    Periodical cited type(3)

    1. 王睿智,彭邦发,姜楠,李杰,吴彦. 毛细管共面介质阻挡放电等离子体特性. 高电压技术. 2023(10): 4445-4457 .
    2. 范喆,孙昊,张帅,章程,韩伟,邵涛. 脉冲火花放电裂解正癸烷的放电稳定性与转化规律. 中国电机工程学报. 2021(22): 7861-7871 .
    3. 狄辉,车学科,钟战,吴祥东,朱少鹏. 滑动弧等离子体强化甲烷/空气扩散火焰燃烧研究. 机电产品开发与创新. 2021(06): 5-7 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (107) PDF downloads (6) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return