Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
WU Jun-lin, LI Zhi-hui, JIANG Xin-yu, et al. Numerical Simulation of Planar Karman Vortex Street Based on Gas-Kinetic Theory[J]. PHYSICS OF GASES, 2021, 6(1): 20-29. DOI: 10.19527/j.cnki.2096-1642.0825
Citation: WU Jun-lin, LI Zhi-hui, JIANG Xin-yu, et al. Numerical Simulation of Planar Karman Vortex Street Based on Gas-Kinetic Theory[J]. PHYSICS OF GASES, 2021, 6(1): 20-29. DOI: 10.19527/j.cnki.2096-1642.0825

Numerical Simulation of Planar Karman Vortex Street Based on Gas-Kinetic Theory

More Information
  • Received Date: December 20, 2019
  • Revised Date: April 02, 2020
  • Published Date: January 19, 2021
  • Based on the gas-kinetic unified algorithm (GKUA) from rarefied transition to continuum, numerical simulation technique for unsteady flows covering various flow regimes was developed by solving the Boltzmann-Rykov model equation involving molecular rotational degrees of freedom. The Rykov kinetic equation involving the effect of molecular rotational energy can be transformed into two kinetic governing equations with inelastic and elastic collisions by integrating the molecular velocity distribution function with the weight factor on the energy of rotational motion. The simultaneous equations were numerically solved by the discrete velocity ordinate (DVO) method in velocity space. Third-order WENO scheme was adopted for the physical space, and third-order explicit Runge-Kutta method was used for time evolution. Numerical simulation of the classical planar Karman vortex street was then implemented, to verify the adaptability of this unsteady simulation method on the low-speed flows in continuum.
  • [1]
    Boltzmann L. Weitere studien uber das warmeg-leichgewicht unter gasmolekulen[J]. Sitzungs Berichte Kaiserl. Akad. Der Wissenschaften, 1872, 66(2): 275-370.
    [2]
    Chapmann S, Cowling T G. The mathematical theory of non-uniform gases[M]. 3rd ed. Cambridge: Cambridge University Press, 1990.
    [3]
    李启兵, 徐昆. 气体动理学格式研究进展[J]. 力学进展, 2012, 42(5): 522-537. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201205002.htm

    Li Q B, Xu K. Progress in gas-kinetic scheme[J]. Advances in Mechanics, 2012, 42(5): 522-537(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201205002.htm
    [4]
    李志辉, 张涵信. 稀薄流到连续流的气体运动论统一算法研究[J]. 空气动力学学报, 2003, 21(3): 255-266. DOI: 10.3969/j.issn.0258-1825.2003.03.001

    Li Z H, Zhang H X. Study on gas kinetic unified algorithm for flows from rarefied transition to contin-uum[J]. Acta Aerodynamica Sinica, 2003, 21(3): 255-266(in Chinese). DOI: 10.3969/j.issn.0258-1825.2003.03.001
    [5]
    Agarwal R K, Tcherimmissine F G. Computation of hypersonic shock wave flows of diatomic gases and gas mixtures using the generalized Boltzmann equation[R]. AIAA 2010-813, 2010.
    [6]
    Kolobov V I, Arslanbekov R R. Towards adaptive kinetic-fluid simulations of weakly ionized plasmas[J]. Journal of Computational Physics, 2012, 231: 839-869. DOI: 10.1016/j.jcp.2011.05.036
    [7]
    Chigullapalli S, Alexeenko A. Unsteady 3D rarefied flow solver based on Boltzmann-ESBGK model kinetic equa-tions[R]. AIAA 2011-3993, 2011.
    [8]
    Polikarpov A P, Graur I. Unsteady rarefied gas flow through a slit[J]. Vacuum, 2014, 101: 79-85. DOI: 10.1016/j.vacuum.2013.07.006
    [9]
    Lihnaropoulos J, Valougeorgis D. Unsteady vacuum gas flow in cylindrical tubes[J]. Fusion Engineering and Design, 2011, 86(9/11): 2139-2142. http://www.sciencedirect.com/science/article/pii/S0920379611001633
    [10]
    Chen S Z, Guo Z L, Xu K. Simplification of the unified gas kinetic scheme[J]. Physical Review E, 2016, 94(2): 023313. DOI: 10.1103/PhysRevE.94.023313
    [11]
    Liu C, Xu K. A unified gas kinetic scheme for continuum and rarefied flows V: multiscale and multi-component plasma transport[J]. Communications in Computational Physics, 2017, 22(5): 1175-1223. DOI: 10.4208/cicp.OA-2017-0102
    [12]
    Guo Z L, Wang R J, Xu K. Discrete unified gas kinetic scheme for all Knudsen number flows. Ⅱ. Thermal compressible case[J]. Physical Review E, 2015, 91(3): 033313. DOI: 10.1103/PhysRevE.91.033313
    [13]
    Li Z H, Zhang H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2): 708-738. DOI: 10.1016/j.jcp.2003.08.022
    [14]
    Li Z H, Zhang H X. Numerical investigation from rarefied flow to continuum by solving the Boltzmann model equa-tion[J]. International Journal of Numerical Methods in Fluids, 2003, 42(4): 361-382. DOI: 10.1002/fld.517
    [15]
    Li Z H, Zhang H X. Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry[J]. Journal of Computational Physics, 2009, 228(4): 1116-1138. DOI: 10.1016/j.jcp.2008.10.013
    [16]
    Li Z H, Zhang H X, Fu S, et al. A gas kinetic algorithm for flows in microchannel[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2005, 6(3): 261-270. http://www.degruyter.com/view/j/ijnsns.2005.6.3/ijnsns.2005.6.3.261/ijnsns.2005.6.3.261.xml?format=PAP
    [17]
    Wu J L, Li Z H, Peng A P, et al. Numerical simulations of unsteady flows from rarefied transition to continuum using gas-kinetic unified algorithm[J]. Advances in Applied Mathematics and Mechanics, 2015, 7(5): 569-596. DOI: 10.4208/aamm.2014.m523
    [18]
    Wu J L, Li Z H, Peng A P, et al. Numerical study on rarefied unsteady jet flow expanding into vacuum using the gas-kinetic unified algorithm[J]. Computers & Fluids, 2017, 155: 50-61.
    [19]
    Li Z H, Peng A P, Zhang H X, et al. Rarefied gas flow simulations using high-order gas-kinetic unified algori-thms for Boltzmann model equations[J]. Progress in Aerospace Sciences, 2015, 74: 81-113. DOI: 10.1016/j.paerosci.2014.12.002
    [20]
    Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525. DOI: 10.1103/PhysRev.94.511
    [21]
    Holway Jr J H. New statistical models for kinetic theory: methods of construction[J]. The Physics of Fluids, 1966, 9(9): 1658-1673. DOI: 10.1063/1.1761920
    [22]
    Shakhov E M. Generalization of the Krook kinetic relaxation equation[J]. Fluid Dynamics, 1968, 3(5): 95-96. DOI: 10.1007/BF01029546
    [23]
    Nagnibeda E, Kustova E. Non-equilibrium reacting gas flows: kinetic theory of transport and relaxation processes[M]. Berlin, Heidelberg: Springer, 2009.
    [24]
    张贺. 统一气体动理论格式分子振动模型研究[D]. 西安: 西北工业大学, 2015.

    Zhang H. Study on molecular vibrational model based on unified gas-kinetic scheme[D]. Xi'an: Northwestern Polytechnical University, 2015(in Chinese).
    [25]
    Wang Z, Yan H, Li Q B, et al. Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes[J]. Journal of Computational Physics, 2017, 350: 237-259. DOI: 10.1016/j.jcp.2017.08.045
    [26]
    Liu S, Yu P B, Xu K, et al. Unified gas-kinetic scheme for diatomic molecular simulations in all flow regimes[J]. Journal of Computational Physics, 2014, 259: 96-113. DOI: 10.1016/j.jcp.2013.11.030
    [27]
    彭傲平, 李志辉, 吴俊林, 等. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析[J]. 物理学报, 2017, 66(20): 204703. DOI: 10.7498/aps.66.204703

    Peng A P, Li Z H, Wu J L, et al. Validation and analysis of gas-kinetic unified algorithm for solving boltzmann model equation with vibrational energy excitation[J]. Acta Phyica Sinica 2017, 66(20): 204703(in Chinese). DOI: 10.7498/aps.66.204703
    [28]
    Rykov V A. A model kinetic equation for a gas with rotational degrees of freedom[J]. Fluid Dynamics, 1975, 10(6): 959-966. DOI: 10.1007/BF01023275
    [29]
    Rykov V A, Titarev V A, Shakhov E M. Shock wave structure in a diatomic gas based on a kinetic model[J]. Fluid Dynamics, 2008, 43(2): 316-326. DOI: 10.1134/S0015462808020178
    [30]
    Rykov V A, Titarev V A, Shakhov E M. Numerical study of the transverse supersonic flow of a diatomic rarefied gas past a plate[J]. Computational Mathematics and Mathematical Physics, 2007, 47(1): 136-150. DOI: 10.1134/S0965542507010149
    [31]
    张涵信, 沈孟育. 计算流体力学-差分方法的原理和应用[M]. 北京: 国防工业出版社, 2003.

    Zhang H X, Shen M Y. Computational fluid dynamics-fundamentals and applications of finite diffe-rence methods[M]. Beijing: National Defence Industry Press, 2003(in Chinese).
    [32]
    张涵信. 关于非定常流动的计算问题[C]. 第六届全国流体力学学术会议论文集, 上海: 中国力学学会, 2001: 23-31.

    Zhang H X. Numerical problems for unsteady flows[C]. 6th Countrywide Hydrodynamics Conference, Shanghai, 2001: 23-31(in Chinese).
    [33]
    Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[R]. NASA/CR-97-206253, ICASE Report No. 97-65, 1997.
    [34]
    邓小刚, 刘昕, 毛枚良, 等. 高精度加权紧致非线性格式的研究进展[J]. 力学进展, 2007, 37(3): 417-427. DOI: 10.3321/j.issn:1000-0992.2007.03.009

    Deng X G, Liu X, Mao M L, et al. Advances in high-order accurate weighted compact nonlinear schemes[J]. Advances in Mechanics, 2007, 37(3): 417-427(in Chinese). DOI: 10.3321/j.issn:1000-0992.2007.03.009
    [35]
    Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. DOI: 10.1006/jcph.1996.0130
    [36]
    董双岭, 吴颂平. 关于卡门涡街形状稳定性的一点分析[J]. 水动力学研究与进展, 2009, 24(3): 326-331. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200903013.htm

    Dong S L, Wu S P. An analysis of the stability of Karman vortex street configurations[J]. Chinese Journal of Hydrodynamics, 2009, 24(3): 326-331(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200903013.htm
    [37]
    Schlichting H. 边界层理论[M]. 徐燕侯, 等, 译. 北京: 科学出版社, 1988.

    Schlichting H. Boundary layer theory[M]. Beijing: Science Press, 1979(in Chinese).
    [38]
    von Kármán T. Uber den Mechanismus des Widerstands, den ein bewegter Korper in einer Flussigkeit erfahrt[J]. Gottingen Nachr. Math. Phys. Klasse, 1912, 12: 509-517. http://eudml.org/doc/58837
    [39]
    唐少杰, 庄逢甘, 忻鼎定. 卡门涡街的慢不稳定性[J]. 力学学报, 1996, 28(2): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB602.000.htm

    Tang S J, Zhuang F G, Xin D D. On the slow instability of Karman vortex street[J]. Acta Mechanica Sinica, 1996, 28(2): 129-134(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB602.000.htm
  • Related Articles

    [1]HU Qiujing, WANG Yan. Numerical Simulation on Drag Reduction for Flow Past Two Tandem Cylinders with Reinforcement Learning[J]. PHYSICS OF GASES, 2025, 10(2): 39-49. DOI: 10.19527/j.cnki.2096-1642.1142
    [2]WU Jun-lin, LI Zhong-hua, PENG Ao-ping, LI Lang-quan, LIANG Jie. Unsteady Flow Driven by the Counter-Flow Jets of High-Altitude Engine Based on DSMC Simulation[J]. PHYSICS OF GASES, 2023, 8(5): 38-45. DOI: 10.19527/j.cnki.2096-1642.1059
    [3]WANG Jun-hui, TIAN Shu-ling. Proper Orthogonal Decomposition of Flow Past Parallel Twin Cylinders[J]. PHYSICS OF GASES, 2023, 8(4): 46-54. DOI: 10.19527/j.cnki.2096-1642.1027
    [4]ZHU Liang, LI Wei-xuan, LI Chun-lei, QI Shao-bo, TIAN Xiao-tao. Transient Establishment Process of Opposing Jet Flow Field[J]. PHYSICS OF GASES, 2023, 8(4): 35-45. DOI: 10.19527/j.cnki.2096-1642.1014
    [5]WANG Qiang, WANG Bo-fu, LIU Yu-lu. Active Control of Flow Past a Near-Wall Cylinder Based on Deep Reinforcement Learning[J]. PHYSICS OF GASES, 2023, 8(2): 56-65. DOI: 10.19527/j.cnki.2096-1642.0991
    [6]LYU Dai-long, CHEN Shao-song, ZHOU Hang, XU Yi-hang. Numerical Study of Flow Around a Raised Cylinder Based on Transition SST Model[J]. PHYSICS OF GASES, 2022, 7(1): 22-29. DOI: 10.19527/j.cnki.2096-1642.0879
    [7]LI Jing, ZHANG Wei-wei. Gappy Proper Orthogonal Decomposition for Flow Data Reconstruction[J]. PHYSICS OF GASES, 2020, 5(4): 1-10. DOI: 10.19527/j.cnki.2096-1642.0791
    [8]LI Zhen-zi, LIN Zi-cheng, GAO Zhi-dong, YE Jian. Large-Eddy Simulation of Flow around Isolated Square Cylinder at Reynolds Number 22 000[J]. PHYSICS OF GASES, 2017, 2(3): 17-23. DOI: 10.19527/j.cnki.2096-1642.2017.03.003
    [9]JIANG Jian-hua, BAO Feng. POD Analysis of a Slit Circular Cylinder Near Wake[J]. PHYSICS OF GASES, 2017, 2(2): 28-36. DOI: 10.19527/j.cnki.2096-1642.2017.02.004
    [10]YUAN Zong-jing, JI Xing, CHEN Gang. Numerical Simulation of Unsteady Flow past Biomimetic Wing with IB-LBM[J]. PHYSICS OF GASES, 2017, 2(1): 39-47. DOI: 10.19527/j.cnki.2096-1642.2017.01.005

Catalog

    Article Metrics

    Article views (100) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return