Citation: | WU Jun-lin, LI Zhi-hui, JIANG Xin-yu, et al. Numerical Simulation of Planar Karman Vortex Street Based on Gas-Kinetic Theory[J]. PHYSICS OF GASES, 2021, 6(1): 20-29. DOI: 10.19527/j.cnki.2096-1642.0825 |
[1] |
Boltzmann L. Weitere studien uber das warmeg-leichgewicht unter gasmolekulen[J]. Sitzungs Berichte Kaiserl. Akad. Der Wissenschaften, 1872, 66(2): 275-370.
|
[2] |
Chapmann S, Cowling T G. The mathematical theory of non-uniform gases[M]. 3rd ed. Cambridge: Cambridge University Press, 1990.
|
[3] |
李启兵, 徐昆. 气体动理学格式研究进展[J]. 力学进展, 2012, 42(5): 522-537. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201205002.htm
Li Q B, Xu K. Progress in gas-kinetic scheme[J]. Advances in Mechanics, 2012, 42(5): 522-537(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201205002.htm
|
[4] |
李志辉, 张涵信. 稀薄流到连续流的气体运动论统一算法研究[J]. 空气动力学学报, 2003, 21(3): 255-266. DOI: 10.3969/j.issn.0258-1825.2003.03.001
Li Z H, Zhang H X. Study on gas kinetic unified algorithm for flows from rarefied transition to contin-uum[J]. Acta Aerodynamica Sinica, 2003, 21(3): 255-266(in Chinese). DOI: 10.3969/j.issn.0258-1825.2003.03.001
|
[5] |
Agarwal R K, Tcherimmissine F G. Computation of hypersonic shock wave flows of diatomic gases and gas mixtures using the generalized Boltzmann equation[R]. AIAA 2010-813, 2010.
|
[6] |
Kolobov V I, Arslanbekov R R. Towards adaptive kinetic-fluid simulations of weakly ionized plasmas[J]. Journal of Computational Physics, 2012, 231: 839-869. DOI: 10.1016/j.jcp.2011.05.036
|
[7] |
Chigullapalli S, Alexeenko A. Unsteady 3D rarefied flow solver based on Boltzmann-ESBGK model kinetic equa-tions[R]. AIAA 2011-3993, 2011.
|
[8] |
Polikarpov A P, Graur I. Unsteady rarefied gas flow through a slit[J]. Vacuum, 2014, 101: 79-85. DOI: 10.1016/j.vacuum.2013.07.006
|
[9] |
Lihnaropoulos J, Valougeorgis D. Unsteady vacuum gas flow in cylindrical tubes[J]. Fusion Engineering and Design, 2011, 86(9/11): 2139-2142. http://www.sciencedirect.com/science/article/pii/S0920379611001633
|
[10] |
Chen S Z, Guo Z L, Xu K. Simplification of the unified gas kinetic scheme[J]. Physical Review E, 2016, 94(2): 023313. DOI: 10.1103/PhysRevE.94.023313
|
[11] |
Liu C, Xu K. A unified gas kinetic scheme for continuum and rarefied flows V: multiscale and multi-component plasma transport[J]. Communications in Computational Physics, 2017, 22(5): 1175-1223. DOI: 10.4208/cicp.OA-2017-0102
|
[12] |
Guo Z L, Wang R J, Xu K. Discrete unified gas kinetic scheme for all Knudsen number flows. Ⅱ. Thermal compressible case[J]. Physical Review E, 2015, 91(3): 033313. DOI: 10.1103/PhysRevE.91.033313
|
[13] |
Li Z H, Zhang H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2): 708-738. DOI: 10.1016/j.jcp.2003.08.022
|
[14] |
Li Z H, Zhang H X. Numerical investigation from rarefied flow to continuum by solving the Boltzmann model equa-tion[J]. International Journal of Numerical Methods in Fluids, 2003, 42(4): 361-382. DOI: 10.1002/fld.517
|
[15] |
Li Z H, Zhang H X. Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry[J]. Journal of Computational Physics, 2009, 228(4): 1116-1138. DOI: 10.1016/j.jcp.2008.10.013
|
[16] |
Li Z H, Zhang H X, Fu S, et al. A gas kinetic algorithm for flows in microchannel[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2005, 6(3): 261-270. http://www.degruyter.com/view/j/ijnsns.2005.6.3/ijnsns.2005.6.3.261/ijnsns.2005.6.3.261.xml?format=PAP
|
[17] |
Wu J L, Li Z H, Peng A P, et al. Numerical simulations of unsteady flows from rarefied transition to continuum using gas-kinetic unified algorithm[J]. Advances in Applied Mathematics and Mechanics, 2015, 7(5): 569-596. DOI: 10.4208/aamm.2014.m523
|
[18] |
Wu J L, Li Z H, Peng A P, et al. Numerical study on rarefied unsteady jet flow expanding into vacuum using the gas-kinetic unified algorithm[J]. Computers & Fluids, 2017, 155: 50-61.
|
[19] |
Li Z H, Peng A P, Zhang H X, et al. Rarefied gas flow simulations using high-order gas-kinetic unified algori-thms for Boltzmann model equations[J]. Progress in Aerospace Sciences, 2015, 74: 81-113. DOI: 10.1016/j.paerosci.2014.12.002
|
[20] |
Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525. DOI: 10.1103/PhysRev.94.511
|
[21] |
Holway Jr J H. New statistical models for kinetic theory: methods of construction[J]. The Physics of Fluids, 1966, 9(9): 1658-1673. DOI: 10.1063/1.1761920
|
[22] |
Shakhov E M. Generalization of the Krook kinetic relaxation equation[J]. Fluid Dynamics, 1968, 3(5): 95-96. DOI: 10.1007/BF01029546
|
[23] |
Nagnibeda E, Kustova E. Non-equilibrium reacting gas flows: kinetic theory of transport and relaxation processes[M]. Berlin, Heidelberg: Springer, 2009.
|
[24] |
张贺. 统一气体动理论格式分子振动模型研究[D]. 西安: 西北工业大学, 2015.
Zhang H. Study on molecular vibrational model based on unified gas-kinetic scheme[D]. Xi'an: Northwestern Polytechnical University, 2015(in Chinese).
|
[25] |
Wang Z, Yan H, Li Q B, et al. Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes[J]. Journal of Computational Physics, 2017, 350: 237-259. DOI: 10.1016/j.jcp.2017.08.045
|
[26] |
Liu S, Yu P B, Xu K, et al. Unified gas-kinetic scheme for diatomic molecular simulations in all flow regimes[J]. Journal of Computational Physics, 2014, 259: 96-113. DOI: 10.1016/j.jcp.2013.11.030
|
[27] |
彭傲平, 李志辉, 吴俊林, 等. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析[J]. 物理学报, 2017, 66(20): 204703. DOI: 10.7498/aps.66.204703
Peng A P, Li Z H, Wu J L, et al. Validation and analysis of gas-kinetic unified algorithm for solving boltzmann model equation with vibrational energy excitation[J]. Acta Phyica Sinica 2017, 66(20): 204703(in Chinese). DOI: 10.7498/aps.66.204703
|
[28] |
Rykov V A. A model kinetic equation for a gas with rotational degrees of freedom[J]. Fluid Dynamics, 1975, 10(6): 959-966. DOI: 10.1007/BF01023275
|
[29] |
Rykov V A, Titarev V A, Shakhov E M. Shock wave structure in a diatomic gas based on a kinetic model[J]. Fluid Dynamics, 2008, 43(2): 316-326. DOI: 10.1134/S0015462808020178
|
[30] |
Rykov V A, Titarev V A, Shakhov E M. Numerical study of the transverse supersonic flow of a diatomic rarefied gas past a plate[J]. Computational Mathematics and Mathematical Physics, 2007, 47(1): 136-150. DOI: 10.1134/S0965542507010149
|
[31] |
张涵信, 沈孟育. 计算流体力学-差分方法的原理和应用[M]. 北京: 国防工业出版社, 2003.
Zhang H X, Shen M Y. Computational fluid dynamics-fundamentals and applications of finite diffe-rence methods[M]. Beijing: National Defence Industry Press, 2003(in Chinese).
|
[32] |
张涵信. 关于非定常流动的计算问题[C]. 第六届全国流体力学学术会议论文集, 上海: 中国力学学会, 2001: 23-31.
Zhang H X. Numerical problems for unsteady flows[C]. 6th Countrywide Hydrodynamics Conference, Shanghai, 2001: 23-31(in Chinese).
|
[33] |
Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[R]. NASA/CR-97-206253, ICASE Report No. 97-65, 1997.
|
[34] |
邓小刚, 刘昕, 毛枚良, 等. 高精度加权紧致非线性格式的研究进展[J]. 力学进展, 2007, 37(3): 417-427. DOI: 10.3321/j.issn:1000-0992.2007.03.009
Deng X G, Liu X, Mao M L, et al. Advances in high-order accurate weighted compact nonlinear schemes[J]. Advances in Mechanics, 2007, 37(3): 417-427(in Chinese). DOI: 10.3321/j.issn:1000-0992.2007.03.009
|
[35] |
Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. DOI: 10.1006/jcph.1996.0130
|
[36] |
董双岭, 吴颂平. 关于卡门涡街形状稳定性的一点分析[J]. 水动力学研究与进展, 2009, 24(3): 326-331. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200903013.htm
Dong S L, Wu S P. An analysis of the stability of Karman vortex street configurations[J]. Chinese Journal of Hydrodynamics, 2009, 24(3): 326-331(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200903013.htm
|
[37] |
Schlichting H. 边界层理论[M]. 徐燕侯, 等, 译. 北京: 科学出版社, 1988.
Schlichting H. Boundary layer theory[M]. Beijing: Science Press, 1979(in Chinese).
|
[38] |
von Kármán T. Uber den Mechanismus des Widerstands, den ein bewegter Korper in einer Flussigkeit erfahrt[J]. Gottingen Nachr. Math. Phys. Klasse, 1912, 12: 509-517. http://eudml.org/doc/58837
|
[39] |
唐少杰, 庄逢甘, 忻鼎定. 卡门涡街的慢不稳定性[J]. 力学学报, 1996, 28(2): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB602.000.htm
Tang S J, Zhuang F G, Xin D D. On the slow instability of Karman vortex street[J]. Acta Mechanica Sinica, 1996, 28(2): 129-134(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB602.000.htm
|