Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
SHUI Chong-yuan, HUANG Jian-qing, CAI Wei-wei. On the Superiorization of Inversion Algorithms for Tomographic Absorption Spectroscopy[J]. PHYSICS OF GASES, 2020, 5(2): 28-37. DOI: 10.19527/j.cnki.2096-1642.0810
Citation: SHUI Chong-yuan, HUANG Jian-qing, CAI Wei-wei. On the Superiorization of Inversion Algorithms for Tomographic Absorption Spectroscopy[J]. PHYSICS OF GASES, 2020, 5(2): 28-37. DOI: 10.19527/j.cnki.2096-1642.0810

On the Superiorization of Inversion Algorithms for Tomographic Absorption Spectroscopy

More Information
  • Received Date: September 04, 2019
  • Revised Date: October 11, 2019
  • Published Date: March 19, 2020
  • Superiorization, which introduces a priori conditions such as smoothness and sparseness to flame reconstruction, was applied to tomographic absorption spectroscopy (TAS) in this paper, as an improvement of existing tomographic inversion algorithms. Through simulation of TAS, the superiorization of algebraic reconstruction technique (ART) and maximum likelihood expectation maximization (MLEM) were studied. The performances of superiorized algorithms for different two-dimensional flame fields and under different target constraints were compared. The influence of noise on the reconstruction, as well as the computational efficiency of the superiorized algorithms under different conditions was studied. The results suggest that the superiorization can improve the tomographic inversion algorithms in terms of reconstruction accuracy and convergence rate.
  • [1]
    Sun J, Xu C L, Zhang B, et al. Three-dimensional temperature field measurement of flame using a single light field camera[J]. Optics Express, 2016, 24(2):1118-1132. https://www.ncbi.nlm.nih.gov/pubmed/26832496
    [2]
    Meyer T R, Halls B R, Jiang N B, et al. High-speed, three-dimensional tomographic laser-induced incandes-cence imaging of soot volume fraction in turbulent flames[J]. Optics Express, 2016, 24(26):29547-29555.
    [3]
    Halls B R, Thul D J, Michaelis D, et al. Single-shot, volumetrically illuminated, three-dimensional, tomogra-phic laser-induced-fluorescence imaging in a gaseous free jet[J]. Optics Express, 2016, 24(9):10040-10049.
    [4]
    Cai W W, Kaminski C F. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flow[J]. Progress in Energy and Combustion Science, 2017, 59:1-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ebb3bcf549851ebb2b80e16ec44c38e
    [5]
    Herman G T. Fundamentals of computerized tomography:Image reconstruction from projection[M]. 2nd ed. London:Springer, 2009:1-26.
    [6]
    Herman G T. Image reconstruction from projections[M]. Berlin:Springer-Verlag, 1979:64-68.
    [7]
    Tsekenis S, Tait N, McCann H. Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images[J]. Review of Scientific Instruments, 2015, 86(3):035104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9de88e55329d94e67387a56933670779
    [8]
    Cai W W, Kaminski C F. A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers[J]. Applied Physics Letters, 2014, 104(3):034101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=165adbdd1b84827f2aafcd8c372df2ab
    [9]
    李可.基于吸收光谱技术的燃烧场温度与浓度层析成像方法研究[D].南京: 东南大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10286-1016328901.htm

    Li K. Study on tomography of temperature and concentration in combustion based on absorption spectrum techno-logy[D]. Nanjing: Southeast University, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10286-1016328901.htm
    [10]
    Yu T, Cai W W. Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy[J]. Applied Optics, 2017, 56(8):2183-2194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76997384d9d8d7d3ec492693516a1fd5
    [11]
    Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3):471-481. DOI: 10.1016-0022-5193(70)90109-8/
    [12]
    Landweber L. An iteration formula for Fredholm integral equations of the first kind[J]. American Journal of Mathematics, 1951, 73(3):615-624.
    [13]
    Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society. Series B, 1977, 39(1):1-38. DOI: 10.1111/j.2517-6161.1977.tb01600.x
    [14]
    Paige C C, Saunders M A. LSQR:an algorithm for sparse linear equations and sparse least squares[J]. ACM Transactions on Mathematical Software, 1982, 8(1):43-71. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb200602029
    [15]
    Andersen A H, Kak A C. Simultaneous algebraic reconstruction technique (SART):a superior implementation of the ART algorithm[J]. Ultrasonic Imaging, 1984, 6(1):81-94. http://d.old.wanfangdata.com.cn/Periodical/gdzjg200207019
    [16]
    Daun K J, Grauer S J, Hadwin P J. Chemical species tomography of turbulent flows:Discrete ill-posed and rank deficient problems and the use of prior information[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 172:58-74. https://www.sciencedirect.com/science/article/abs/pii/S0022407315003040
    [17]
    Tikhonov A N. Inverse problems in heat conduction[J]. Journal of Engineering Physics, 1975, 29(1):816-820. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_de70f274bac9a33a2e49187ac402d7db
    [18]
    Sidky E Y, Kao C M, Pan X. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X-Ray Science and Technology, 2006, 14(2):119-139. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0904.4495
    [19]
    Butnariu D, Davidi R, Herman G T, et al. Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):540-547.
    [20]
    Censor Y, Davidi R, Herman G T. Perturbation resilience and superiorization of iterative algorithms[J]. Inverse Problems, 2010, 26(6):065008. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1005.0069
    [21]
    Davidi R, Herman G T, Censor Y. Perturbation-resilient block-iterative projection methods with application to image reconstruction from projections[J]. International Transactions in Operational Research, 2009, 16(4):505-524. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529939/
    [22]
    Nikazad T, Davidi R, Herman G T. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction[J]. Inverse Problems, 2012, 28(3):035005. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3579648
    [23]
    Luo S S, Zhou T. Superiorization of EM algorithm and its application in single-photon emission computed tomography (SPECT)[J]. Inverse Problems & Imaging, 2014, 8(1):223-246. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1209.6116
    [24]
    Garduno E, Herman G T. Superiorization of the ML-EM algorithm[J]. IEEE Transactions on Nuclear Science, 2014, 61(1):162-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f6035e600df47afd886c28d328856b44
    [25]
    Jin W, Censor Y, Jiang M. Bounded perturbation resilience of projected scaled gradient methods[J]. Computational Optimization and Applications, 2015, 63(2):365-392. DOI: 10.1007%2Fs10589-015-9777-x
    [26]
    Herman G T, Lent A, Lutz P H. Relaxation methods for image reconstruction[J]. Communications of the ACM, 1978, 21(2):152-158. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3799947
    [27]
    Kaczmarz S. Angenaherte aufl osung von systemen linearer gleichungen[J]. Bulletin International de L' Academie Polonaise des Sciences et des Lettres, 1937, 35, 355-357.
    [28]
    Shepp L A, Vardi Y. Maximum likelihood reconstruction for emission tomography[J]. IEEE Transactions on Medical Imaging, 1982, 1(2):113-122. DOI: 10.1109-TMI.1982.4307558/
    [29]
    Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography[J]. Journal of Computer Assisted Tomography, 1984, 8(2):306-316. https://www.ncbi.nlm.nih.gov/pubmed/6608535
    [30]
    张艳春. Superiorization算法的理论研究和改进及其在CT和MRI中的应用[D].开封: 河南大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10475-1016202337.htm

    Zhang Y C. Theoretical study and improvement of superiorization algorithm and its application in CT and MRI[D]. Kaifeng: Henan University, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10475-1016202337.htm
    [31]
    Cai W W, Li X S, Li F, et al. Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence[J]. Optics Express, 2013, 21(6):7050-7064. https://www.ncbi.nlm.nih.gov/pubmed/23546088
    [32]
    Twynstra M G, Daun K J. Laser-absorption tomography beam arrangement optimization using resolution matrices[J]. Applied Optics, 2012, 51(29):7059-7068. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227898184/
    [33]
    Terzija N, Davidson J L, Garcia-Stewart C A, et al. Image optimization for chemical species tomography with an irregular and sparse beam array[J]. Measurement Science and Technology, 2008, 19(9):094007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=00ecd75dae21b65cd375158d55c5808a
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (156) PDF downloads (3) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return