Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Volume 4 Issue 5
Sep.  2019
Turn off MathJax
Article Contents
YAO Xuan-yu, WANG Chun, YU Jiang, YUAN Chao-kai, JIANG Zong-lin, SITU Ming. High-Mach-Number Scramjet Engine Tests in JF12 Shock Tunnel[J]. PHYSICS OF GASES, 2019, 4(5): 25-31. doi: 10.19527/j.cnki.2096-1642.0788
Citation: YAO Xuan-yu, WANG Chun, YU Jiang, YUAN Chao-kai, JIANG Zong-lin, SITU Ming. High-Mach-Number Scramjet Engine Tests in JF12 Shock Tunnel[J]. PHYSICS OF GASES, 2019, 4(5): 25-31. doi: 10.19527/j.cnki.2096-1642.0788

High-Mach-Number Scramjet Engine Tests in JF12 Shock Tunnel

doi: 10.19527/j.cnki.2096-1642.0788
  • Received Date: 08 Jul 2019
  • Revised Date: 17 Jul 2019
  • Published: 20 Sep 2019
  • A schematic configuration of dual-step supersonic combustor was proposed to overcome the high gasdynamic drag of scramjet engine in high-Mach-number flight (Ma ≥ 7). Numerical simulations were conducted to evaluate the coupled mixing and combustion features of fuel jet and dual-step flowfield. A scramjet model with dual-step was designed and tested in the JF12 Shock Tunnel, which can provide the pure air medium for simulating high-Mach-number scramjet tests. During the 100 ms test duration of JF12 Shock Tunnel, successful ignition and stable combustion of hydrogen-fueled scramjet models were realized in both simulation conditions of Ma=7.0 and Ma=9.5 and the experimental results were compared. In the simulation condition of Mach 7, three-dimensional inlet was used and the entrance Mach number of supersonic chamber was about Mac=2.5. The wall pressure distributions showed that the combustion took place in the upstream of expansion section of duct. In the simulation condition of Mach 9.5, two-dimensional inlet was used and the entrance Mach number of supersonic chamber was about Mac=3.5. The combustion took place near the exit of inner duct of scramjet model.

     

  • loading
  • [1]
    Landsberg W O, Wheatley V, Smart M K. Performance of high Mach number scramjets-Tunnel vs flight[J]. Acta Astronautica, 2018, 146:103-110. doi: 10.1016/j.actaastro.2018.02.031
    [2]
    Barth J E, Wheatley V, Smart M K. Effects of hydrogen fuel injection in a Mach 12 scramjet inlet[J]. AIAA Journal, 2015, 53(10):2907-2919. doi: 10.2514/1.J053819
    [3]
    Wise D J, Smart M K. Experimental investigation of a three-dimensional scramjet engine at Mach 12[R]. AIAA 2015-3650, 2015.
    [4]
    周建兴, 汪颖.高马赫数超燃冲压发动机性能数值研究[J].推进技术, 2014, 35(4):433-441. http://d.old.wanfangdata.com.cn/Periodical/tjjs201404001

    Zhou J X, Wang Y. Numerical investigation on performance of a high Mach number scramjet[J]. Journal of Propulsion Technology, 2014, 35(4):433-441(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201404001
    [5]
    杨甫江, 郭晟, 李亭鹤.更高马赫数超燃冲压发动机推阻力分析[J].中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集——吸气式与组合推进技术, 大连:中国航天第三专业信息网, 2017.
    [6]
    张时空, 李江, 黄志伟, 等.高马赫数来流超燃冲压发动机燃烧流场分析[J].宇航学报, 2017, 38(1):80-88. http://d.old.wanfangdata.com.cn/Periodical/yhxb201701011

    Zhang S K, Li J, Huang Z W, et al. Combustion flow field analysis of a scramjet engine at high Mach number[J]. Journal of Astronautics, 2017, 38(1):80-88(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yhxb201701011
    [7]
    苑杰, 李亭鹤, 杨甫江, 等.高马赫数来流边界层燃烧减阻数值验证及分析[C].中国航天第三专业信息网第三十九届技术交流会暨第三届空天动力联合会议论文集——S03吸气式与组合推进技术.洛阳: 中国航天第三专业信息网, 2018.

    Yuan J, Li T H, Yang F J, et al. Numerical validation and analysis to the drag-reducing mechanism of boundary combustion in high-Mach-number flow[C]. The 39th APTIS Technical Conference and 3th JCAP, Luoyang, China, 2018(in Chinese).
    [8]
    McClinton C R. X-43 scramjet power breaks the hypersonic barrier: Dryden lectureship in research for 2006[R]. AIAA 2006-0001, 2006.
    [9]
    Peebles C. The X-43A flight research program: lessons learned on the road to Mach 10[R]. Progressive Management, 2015.
    [10]
    Boyce R R, Paull A. Scramjet intake and exhaust CFD studies for the HyShot scramjet flight experiment[R]. AIAA 2001-1891, 2001.
    [11]
    Boyce R R, Gerard S, Paull A. The HyShot scramjet flight experiment-flight data and CFD calculations com-pared[R]. AIAA 2003-7029, 2003.
    [12]
    Smart M K, Hass N E, Paull A. Flight data analysis of the HyShot 2 scramjet flight experiment[J]. AIAA Journal, 2006, 44(10):2366-2375. doi: 10.2514/1.20661
    [13]
    Jackson K R, Gruber M R, Buccellato S. An overview of the HIFiRE flight 2 project (Invited)[R]. AIAA 2013-0695, 2013.
    [14]
    Barth J E, Wheatley V, Smart M K. Effects of hydrogen fuel injection in a Mach 12 scramjet inlet[J]. AIAA Journal, 2015, 53(10):2907-2919. doi: 10.2514/1.J053819
    [15]
    Wise D J, Smart M K. Experimental investigation of a three-dimensional scramjet engine at Mach 12[R]. AIAA 2015-3650, 2015.
    [16]
    Ben-Yakar A, Hanson R K. Cavity flame-holders for ignition and flame stabilization in scramjets:an overview[J]. Journal of Propulsion and Power, 2001, 17(4):869-877. doi: 10.2514/2.5818
    [17]
    Raman G, Envia E, Bencic T J. Tone noise and nearfield pressure produced by jet-cavity interaction[R]. AIAA 1999-0604, 1999.
    [18]
    Hsu K Y, Carter C D, Gruber M R, et al. Experimental study of cavity-strut combustion in supersonic flow[R]. AIAA 2007-5394, 2007.
    [19]
    Sunami T, Magre P, Bresson A, et al. Experimental study of strut injectors in a supersonic combustor using OH-PLIF[R]. AIAA 2005-3304, 2005.
    [20]
    Glawe D, Samimiy M, Nejad A S, et al. Effects of nozzle geometry on parallel injection from the base of an extended strut into a supersonic flow[R]. AIAA 1995-522, 1995.
    [21]
    McDaniel J C, Fletcher D G, Hartfield R J, et al. Transverse injection into Mach 2 flow behind a rearward-facing step: a 3-D, compressible flow test case for hypersonic combustor CFD validation[R]. AIAA 1991-5071, 1991.
    [22]
    Thakur A, Segal C. Analyses of non-premixed flamehol-ding behind a step in supersonic flow[R]. AIAA 2006-1380, 2006.
    [23]
    Abbitt III J D, Segal C, McDaniel J C, et al. Experimental supersonic hydrogen combustion employing staged injection behind a rearward-facing step[J]. Journal of Propulsion and Power, 1993, 9(3):472-478. doi: 10.2514/3.23646
    [24]
    Pellett G L, Bruno C, Chinitz W. Review of air vitiation effects on Scramjet ignition and flameholding combustion processes[R]. AIAA 2002-3880, 2002.
    [25]
    Rogers R C, Shih A T, Tsai C Y, et al. Scramjet tests in a shock tunnel at flight Mach 7, 10, and 15 conditions[R]. AIAA 2001-3241, 2001.
    [26]
    Edelman R B, Spadaccini L J. Theoretical effects of vitiated air contamination on ground testing of hypersonic airbreathing engines[J]. Journal of Spacecraft and Rockets, 1969, 6(12):1442-1447. doi: 10.2514/3.29844
    [27]
    罗飞腾, 宋文艳, 刘昊.污染空气对氢燃料超声速燃烧室性能的影响[J].推进技术, 2010, 31(4):401-405. http://d.old.wanfangdata.com.cn/Periodical/tjjs201004004

    Luo F T, Song W Y, Liu H. Experimental investigation for vitiated air effects on hydrogen-fueled supersonic combustor performance[J]. Journal of Propulsion Technolo-gy, 2010, 31(4):401-405(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201004004
    [28]
    张志强, 宋文艳, 罗飞腾. H2O/CO2组分对氢和乙烯超声速燃烧室性能影响数值模拟[J].西北工业大学学报, 2012, 30(2):256-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbgydxxb201202020

    Zhang Z Q, Song W Y, Luo F T. Numerical Investigation of effects of H2O/CO2 vitiation on performance of hydrogen and ethylene supersonic combustors[J]. Journal of Northwestern Polytechnical University, 2012, 30(2):256-261(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbgydxxb201202020
    [29]
    李卫强.水组分对超燃冲压发动机燃烧室性能的影响[D].西安: 西北工业大学, 2006.

    Li W Q. The effect of vitiated water vapor on the performance of scramjet combustor[D]. Xi'an: Northwestern Polytechnical University, 2006(in Chinese).
    [30]
    欧东斌, 陈连忠, 董永晖, 等.大尺寸结构部件电弧风洞烧蚀试验技术[J].空气动力学学报, 2015, 33(5):661-666. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201505013

    Ou D B, Chen L Z, Dong Y H, et al. Ablation test technique of large scale structure component in arc-heated wind tunnel[J]. ACTA Aerodynamica Sinica, 2015, 33(5):661-666(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201505013
    [31]
    Itoh K. Aerothermodynamic and scramjet tests in high enthalpy shock tunnel[R]. AIAA 2007-1041, 2007.
    [32]
    Tanno H, Itoh K, Ueda S, et al. Scramjet testing in high-enthalpy shock tunnel(HIEST)[C]. Proceedings of Symposium on Shock Waves JAPAN. Tenjin-Cho: SSWJ, 2002: 12-16.
    [33]
    Stalker R J, Paull A, Mee D J, et al. Scramjets and shock tunnels-the Queensland experience[J]. Progress in Aerospace Sciences, 2005, 41(6):471-513. doi: 10.1016/j.paerosci.2005.08.002
    [34]
    McGilvray M, Morgan R G, Jacobs P A. Scramjet experiments in an expansion tunnel:evaluated using a quasi-steady analysis technique[J]. AIAA Journal, 2010, 48(8):1635-1646. doi: 10.2514/1.J050024
    [35]
    姜宗林, 李进平, 赵伟, 等.长试验时间爆轰驱动激波风洞技术研究[J].力学学报, 2012, 44(5):824-831. http://d.old.wanfangdata.com.cn/Conference/7714651

    Jiang Z L, Li J P, Zhao W, et al. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5):824-831(in Chinese). http://d.old.wanfangdata.com.cn/Conference/7714651
    [36]
    刘云峰, 汪运鹏, 苑朝凯, 等. JF12长实验时间激波风洞10°尖锥气动力实验研究[J].气体物理, 2017, 2(2):1-7. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=83ff9845-6d04-4f07-80e2-ed927aa61457

    Liu Y F, Wang Y P, Yuan C K, et al. Aerodynamic force measurements of 10° half-angle cone in JF12 long-test-time shock tunnel[J]. Physics of Gases, 2017, 2(2):1-7(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=83ff9845-6d04-4f07-80e2-ed927aa61457
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (169) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return