Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
WANG Zi-wei, LIU Dong-jian, CHEN Ti. Numerical Simulation of the Rotating Stall Feature on a Single Stage Transonic Compressor[J]. PHYSICS OF GASES, 2021, 6(1): 30-37. DOI: 10.19527/j.cnki.2096-1642.0787
Citation: WANG Zi-wei, LIU Dong-jian, CHEN Ti. Numerical Simulation of the Rotating Stall Feature on a Single Stage Transonic Compressor[J]. PHYSICS OF GASES, 2021, 6(1): 30-37. DOI: 10.19527/j.cnki.2096-1642.0787

Numerical Simulation of the Rotating Stall Feature on a Single Stage Transonic Compressor

More Information
  • Received Date: July 07, 2019
  • Revised Date: May 10, 2020
  • Published Date: January 19, 2021
  • To study the characteristics of stall inception and stall development in multi-row transonic axial compressor, taking NASA Stage 35 as an example, the development from near stall to fully developed stall was simulated. The simulation was conducted based on the in-house code ASPAC. The dynamic overlapped grid technique, mass flow boundary at the outlet, throttle valve boundary condition were used. The simulation result indicates that: the developed simulation technique can predict the development process of rotating stall correctly. Under the condition of uniform inlet flow, as the flow approaches to stall condition, the blade tip leakage occurs on the leading edge of pressure surface for some rotors, which leads to the rotating stall of the compressor. Under the condition of stall inception, circumferential non-uniform flow occurs and propagates circumferentially. When the rotating stall is fully developed, the adverse flow occurs on the pressure surface of stator and is mainly adjacent to the stall cells in the rotor, meanwhile the flow structure in the stall region nearly does not change with time.
  • [1]
    Day I, Morris S, et al. Spike-type compressor stall inception, detection, and control[J]. Annual Review of Fluid Mechanics, 2010, 42: 275-300. DOI: 10.1146/annurev-fluid-121108-145603
    [2]
    钟勇健, 腾金芳, 徐玺, 等. 跨声速轴流压气机失速边界预测方法[J]. 航空动力学报, 2014, 29(8): 1838-1845. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201408012.htm

    Zhong Y J, Teng J F, Xu X, et al. Prediction method of stall margin in axial-flow transonic compressor[J]. Journal of Aerospace Power, 2014, 29(8): 1838-1845(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201408012.htm
    [3]
    屠宝锋. 风扇/压气机动态失速过程和多尺度非定常气动稳定性研究[D]. 南京: 南京航空航天大学, 2009.

    Tu B F. Dynamic stall inception and multi-scale unsteady aerodynamic stability investigation of fan/compressor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
    [4]
    郭晋, 胡骏, 屠宝锋. 多级轴流压气机彻体力模型——理论方法及简化应用[J]. 航空动力学报, 2018, 33(8): 1954-1963. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201808019.htm

    Guo J, Hu J, Tu B F. Body force model for multistage axial compressor-theoretical method and simplified application[J]. Journal of Aerospace Power, 2018, 33(8): 1954-1963(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201808019.htm
    [5]
    禹世奇. 压气机近失速状态流场非定常特性研究[D]. 南京: 南京航空航天大学, 2012.

    Yu S Q. Unsteady analysis of axial flow compressor at near stall conditions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [6]
    鞠鹏飞, 宁方飞. 跨声压气机近失速流动特征的数值模拟研究[J]. 推进技术, 2016, 37(6): 1055-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201606008.htm

    Ju P F, Ning F F. Numerical study of near-stall flow feature on transonic compressor[J]. Journal of Propulsion Technology, 2016, 37(6): 1055-1064(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201606008.htm
    [7]
    贺象, 银越千, 黄生勤, 等. 低速轴流压气机旋转失速演化机制研究[J]. 航空发动机, 2016, 42(5): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201605015.htm

    He X, Yin Y Q, Huang S Q, et al. Investigation on the rotating stall in a low-speed axial compressor[J]. Aeroengine, 2016, 42(5): 81-86(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201605015.htm
    [8]
    李清鹏, 吴艳辉, 楚武利, 等. 轴流压气机转子近失速工况全通道数值模拟[J]. 航空动力学报, 2011, 26(10): 2330-2338. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201110023.htm

    Li Q P, Wu Y H, Chu W L, et al. Full-annulus simulations on axial compressor rotor at near stall condition[J]. Journal of Aerospace Power, 2011, 26(10): 2330-2338(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201110023.htm
    [9]
    吴艳辉, 王晓, 稂仿玉, 等. 单级轴流压气机失速起始的数值模拟[J]. 航空动力学报, 2014, 29(1): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201401017.htm

    Wu Y H, Wang X, Lang F Y, et al. Numerical simulation of stall inception in single-stage axial-flow compressor[J]. Journal of Aerospace Power, 2014, 29(1): 125-132(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201401017.htm
    [10]
    Menon S, Schmidt D P. Conservative interpolation on unstructured polyhedral meshes: an extension of the supermesh approach to cell-centered finite-volume variables[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(41/44): 2797-2804. http://www.sciencedirect.com/science/article/pii/S0045782511001666
    [11]
    徐春光, 董海波, 刘君. 基于单元相交的混合网格精确守恒插值方法[J]. 爆炸与冲击, 2016, 36(3): 305-312. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201603003.htm

    Xu C G, Dong H B, Liu J. An accurate conservative interpolation method for the mixed grid based on the intersection of grid cells[J]. Explosion and Shock Waves, 2016, 36(3): 305-312(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201603003.htm
    [12]
    崔鹏程, 唐静, 李彬, 等. 基于超网格的重叠网格守恒插值方法[J]. 航空学报, 2018, 39(3): 121569. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201803003.htm

    Cui P C, Tang J, Li B, et al. A conservative interpolation method for overset mesh via super mesh[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121569(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201803003.htm
    [13]
    Reid L, Moore R D. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 1.82[R]. NASA TP-1338, 1978.
    [14]
    王子维, 范召林, 江雄, 等. 用于多级压气机非定常流动的谐波平衡方法研究[J]. 推进技术, 2017, 38(11): 2512-2521. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201711014.htm

    Wang Z W, Fan Z L, Jiang X, et al. Investigation on harmonic balance method for simulation of unsteady flow in the multi-stage compressor[J]. Journal of Propulsion Technology, 2017, 38(11): 2512-2521(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201711014.htm
    [15]
    Herrick G P, Hathaway M D, Chen J P. Unsteady full annulus simulations of a transonic axial compressor stage[R]. AIAA 2009-1059, 2009.
  • Cited by

    Periodical cited type(1)

    1. CAO Dongming,YUAN Caijia,WANG Dingxi,HUANG Xiuquan. Transition from Unsteady Flow Inception to Rotating Stall and Surge in a Transonic Compressor. Journal of Thermal Science. 2022(01): 120-129 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (82) PDF downloads (10) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return