Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
GU Hong-yu, SANG Wei-min, PANG Run, et al. Numerical Simulation of Wing Hot Air Anti-Icing and Ice Ridge Formation[J]. PHYSICS OF GASES, 2019, 4(4): 41-49. DOI: 10.19527/j.cnki.2096-1642.0768
Citation: GU Hong-yu, SANG Wei-min, PANG Run, et al. Numerical Simulation of Wing Hot Air Anti-Icing and Ice Ridge Formation[J]. PHYSICS OF GASES, 2019, 4(4): 41-49. DOI: 10.19527/j.cnki.2096-1642.0768

Numerical Simulation of Wing Hot Air Anti-Icing and Ice Ridge Formation

More Information
  • Received Date: June 18, 2019
  • Revised Date: June 26, 2019
  • Published Date: July 19, 2019
  • The N-S equation was used to solve the external air flow and the internal anti-icing cavity flow. The impact characteristics of the supercooled droplets were obtained by the Euler method. After the internal and external flow are stabilized by coupling heat transfer, it starts icing to achieve numerical simulation of wing hot air anti-icing and ice ridge formation. The simulation results show that when the hot air anti-icing system is turned on, the minimum temperature of the skin in the heating zone is 286 K to ensure that the heating zone has no ice, but the temperatures of the upper and lower wing surface behind the heating zone are reduced to below 273.15 K, and the water from the anti-icing zone runs here to form ice ridge. The analysis of the simulation results shows the feasibility and rationality of the numerical simulation of hot air anti-icing. However, in the case of removing the ice from the leading edge, the formation of ice ridge outside the anti-icing zone has a severe influence on the aerodynamic characteristics. Numerical simulation of the flow around the wing with ice ridge was carried out. It discloses that with a lower environment temperature, the ice ridge is higher and closer to the anti-icing zone; and with a longer icing time, the unsteady characteristics of the ice ridge are more obvious, the capture of the flow details is more difficult, and the influence on aerodynamic characteristics is more severe.
  • [1]
    Bragg M B, Perkins W R, Sarter N B, et al. An interdisciplinary approach to inflight aircraft icing safety[R]. AIAA 1998-0095, 1998.
    [2]
    Jones S M, Reveley M S, Evans J K, et al. Subsonic aircraft safety icing study[R]. NASA/TM-2008-215107, 2008.
    [3]
    Papadakis M, Wong S H, Yeong H W, et al. Icing tunnel experiments with a hot air anti-icing system[R]. AIAA 2008-444, 2008.
    [4]
    Souder R H, Sheldon D W, Ide R F, et al. NASA Glenn icing research tunnel user manual[R]. NASA TM 2003-212004, 2003.
    [5]
    Planquart P, Vanden B G, Buchlin J M. Experimental and numerical optimization of a wing leading edge hot air anti-icing system[R]. AIAA 2005-1227, 2005.
    [6]
    Pellissier F, Habashi W, Pueyo A. Design optimization of hot-air anti-icing systems by FENSAP-ICE[R]. AIAA 2010-1238, 2010.
    [7]
    霍西恒, 王大伟, 李革萍, 等.某型飞机机翼防冰系统性能验证研究[J].民用飞机设计与研究, 2013(4):13-16, 45. DOI: 10.3969/j.issn.1674-9804.2013.04.004

    Huo X H, Wang D W, Li G P, et al. Research of wing anti-ice system performance validation for civil aircraft[J]. Civil Aircraft Design & Research, 2013(4):13-16, 45(in Chinese). DOI: 10.3969/j.issn.1674-9804.2013.04.004
    [8]
    Wong S H, Papadakis M, Wong J. CFD analysis of a wing with a bleed air ice protection system[R]. AIAA 2013-2935, 2013.
    [9]
    易贤.飞机积冰的数值计算与积冰试验相似准则研究[D].绵阳: 中国空气动力研究与发展中心, 2007.

    Yi X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China Aerodynamics Research and Development Center, 2007(in Chinese).
    [10]
    王昆, 白俊强, 夏露, 等.飞机热气防冰系统与冰脊预测的数值模拟[J].航空动力学报, 2014, 29(11):2695-2703. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201411021

    Wang K, Bai J Q, Xia L, et al. Numerical simulation of aircraft hot air anti-icing system and ice ridge predic-tion[J]. Journal of Aerospace Power, 2014, 29(11):2695-2703(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201411021
    [11]
    Bourgault Y, Boutanios Z, Habashi W G. Three-dimensional Eulerian approach to droplet impingement simula-tion using FENSAP-ICE, Part 1:model, algorithm, and validation[J]. Journal of Aircraft, 2000, 37(1):95-103. DOI: 10.2514/2.2566
    [12]
    胡剑平, 刘振侠, 张丽芬.霜状冰结冰数值模拟研究[J].航空计算技术, 2011, 41(6):8-11. DOI: 10.3969/j.issn.1671-654X.2011.06.003

    Hu J P, Liu Z X, Zhang L F. Numerical simulation of 3D rime ice[J].Aeronautical Computing Technique, 2011, 41(6):8-11(in Chinese). DOI: 10.3969/j.issn.1671-654X.2011.06.003
    [13]
    Bourgault Y, Beaugendre H, Habashi W. Development of a shallow-water icing model in FENSAP-ICE[J]. Journal of Aircraft, 2000, 37(4):604-646. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e1cb8b96ca897580a5758804c6a1c0d
    [14]
    Saeed F, Paraschivoiu I. Optimization of a hot-air anti-icing system[R]. AIAA 2003-733, 2003.
    [15]
    Planquart P, Vanden B G, Buchlin J M. Experimental and numerical optimization of a wing leading edge hot air anti-icing system[R]. AIAA 2005-1277, 2005.
    [16]
    Papadakis M, Wong S H, Yeong H W, et al. Icing tunnel experiments with a hot air anti-icing system[R]. AIAA 2008-444, 2008.
    [17]
    De Santos L C, Domingos R H, Maria R B, et al. Sensitivity analysis of a bleed air anti-ice thermal model to geometrical and operational parameters[R]. AIAA 2008-0445, 2008.
  • Related Articles

    [1]CHEN Jin-chi, HUANG Yan-xin. Linearization and Analytical Sensitivity of Unsteady Vortex-Lattice Aerodynamics[J]. PHYSICS OF GASES, 2023, 8(6): 55-64. DOI: 10.19527/j.cnki.2096-1642.1060
    [2]WU Jun-lin, LI Zhong-hua, PENG Ao-ping, LI Lang-quan, LIANG Jie. Unsteady Flow Driven by the Counter-Flow Jets of High-Altitude Engine Based on DSMC Simulation[J]. PHYSICS OF GASES, 2023, 8(5): 38-45. DOI: 10.19527/j.cnki.2096-1642.1059
    [3]REN Yi-peng, ZHENG Chen, MIN Chang-wan. Effect of Engine Jets on Rocket Aerodynamic Characteristics[J]. PHYSICS OF GASES, 2022, 7(5): 38-49. DOI: 10.19527/j.cnki.2096-1642.0960
    [4]DENG Hua-yu, LUO Ri-cheng, YANG Guan-fei, FENG Jian, LIU Peng, YAN Jin, ZHONG Yan. Influence of Applied DC Bias on the Characteristics of RF Capacitive Coupling Discharge[J]. PHYSICS OF GASES, 2022, 7(3): 87-92. DOI: 10.19527/j.cnki.2096-1642.0944
    [5]WANG Xiao-wei, ZHANG Zhi-hui, WANG Xian. Numerical Investigation on the Working Characteristics of Dual Synthetic Hot Jet Actuator in Icing Environment[J]. PHYSICS OF GASES, 2022, 7(2): 65-74. DOI: 10.19527/j.cnki.2096-1642.0947
    [6]LIANG Bin, FU Zeng-liang, YUE Cai-qian, ZHAO Jun-bo. Micro Rolling Moment Measurements for Asymmetric-Wing Standard Model and Dynamic Characteristics of Air Bearing[J]. PHYSICS OF GASES, 2021, 6(5): 20-25. DOI: 10.19527/j.cnki.2096-1642.0910
    [7]WANG Chao, WANG Fang-jian, WANG Gui-dong, CHEN Lan, DING Zhi-chao. Artificial Neural Network Modeling of Unsteady Aerodynamic Characteristics of Aircraft at High Attack Angle[J]. PHYSICS OF GASES, 2020, 5(4): 11-20. DOI: 10.19527/j.cnki.2096-1642.0792
    [8]JIN Chen-hui, WANG Gang, WANG Ze-han. Numerical Simulation of Unsteady CFD/RBD in Multibody Separation Process of Cluster Munitions[J]. PHYSICS OF GASES, 2018, 3(4): 47-63. DOI: 10.19527/j.cnki.2096-1642.2018.04.006
    [9]JIANG Hao, XIA Zhi-xun, LUO Zhen-bing, DENG Xiong, YANG Sheng-ke, LIU Qiang. Droplet Impingement Characteristics with Dual Synthetic Jet Control[J]. PHYSICS OF GASES, 2017, 2(6): 39-47. DOI: 10.19527/j.cnki.2096-1642.2017.06.005
    [10]LI Yu-jie, SHI Yan-qing, LUO Zhen-bing, YE Yi-min, CHEN Yun-fei. Experimental Investigation on the Process of Droplet Icing/Frosting and Anti-frosting/Anti-icing Using Dual Synthetic Jet[J]. PHYSICS OF GASES, 2017, 2(5): 37-45. DOI: 10.19527/j.cnki.2096-1642.2017.05.005
  • Cited by

    Periodical cited type(4)

    1. 杨毅,翁远卓. 热气防冰参数对机翼表面溢流结冰的影响研究. 民用飞机设计与研究. 2023(02): 99-106 .
    2. 刘雪城,梁华,宗豪华,谢理科,苏志. NACA0012翼型等离子体冰形调控试验. 航空学报. 2022(09): 398-409 .
    3. 辛苗,钟国,曹义华. 基于水膜流动与耦合传热的翼型防/除冰计算. 航空动力学报. 2021(04): 783-794 .
    4. 谭雪,张辰,徐文浩,王福新,文敏华. 近失速形态下冰脊分离非定常流的IDDES和模态分析. 上海交通大学学报. 2021(11): 1333-1342 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (145) PDF downloads (8) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return