Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Volume 5 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
WANG Hai-qing, LIN Wei, TONG Yi-heng, ZHU Yang-zhu, SU Ling-yu, NIE Wan-sheng. Review of Laser-Based Temperature Diagnosis Methods for Combustion Field[J]. PHYSICS OF GASES, 2020, 5(1): 42-55. doi: 10.19527/j.cnki.2096-1642.0752
Citation: WANG Hai-qing, LIN Wei, TONG Yi-heng, ZHU Yang-zhu, SU Ling-yu, NIE Wan-sheng. Review of Laser-Based Temperature Diagnosis Methods for Combustion Field[J]. PHYSICS OF GASES, 2020, 5(1): 42-55. doi: 10.19527/j.cnki.2096-1642.0752

Review of Laser-Based Temperature Diagnosis Methods for Combustion Field

doi: 10.19527/j.cnki.2096-1642.0752
  • Received Date: 16 Apr 2019
  • Revised Date: 08 Aug 2019
  • Published: 20 Jan 2020
  • In the study of combustion, the temperature and spatial distributions of temperature field, velocity field, species field and pressure field are very important. In order to calculate the heat conduction, heat convection and heat radiation or to capture the flame zone, the most direct way is to obtain the temperature of the combustion field. In recent years, non-intrusive laser-based diagnostic technology has advanced rapidly. The Rayleigh scattering thermometry, laser-induced fluorescence(LIF), laser-induced phosphorescence (LIP), Raman scattering thermometry, coherent anti-Stokes Raman scattering (CARS), degenerate four-wave mixing (DFWM), and tunable diode laser absorption spectroscopy (TDLAS) have been successfully used in temperature diagnostics in combustion studies. The basic working principles and applications of the technique above were reviewed in this papper, and it has a certain reference value for researchers engaged in related fields.

     

  • loading
  • [1]
    [2]
    Katnarina K H, Jay B J.应用燃烧诊断学[M].刘晶儒, 叶景峰, 陶波, 等, 译, 北京: 国防工业出版社, 2017: 137-160.Katnarina K H, Jay B J. Applied combustion diagnostics[M]. Liu J R, Ye J F, Tao B, et al, tran. Beijing: National Defense Industry Press, 2017: 137-160(in Chinese).
    [3]
    Most D, Dinkelacker F, Leipertz A. Direct determination of the turbulent flux by simultaneous application of filtered Rayleigh scattering thermometry and particle image velocimetry[J]. Proceedings of the Combustion Institute, 2002, 29(2):2669-2677. doi: 10.1016/S1540-7489(02)80325-X
    [4]
    Dibble R W, Hollenbach R E. Laser Rayleigh thermometry in turbulent flames[J]. Symposium (International) on Combustion, 1981, 18(1):1489-1499. doi: 10.1016/S0082-0784(81)80151-8
    [5]
    Zhao F, Hiroyasu H. The applications of laser Rayleigh scattering to combustion diagnostics[J]. Progress in Energy and Combustion Science, 1993, 19(6):447-485. doi: 10.1016/0360-1285(93)90001-U
    [6]
    朱燕群, 何勇, 杨丽, 等.基于瑞利散射法定量测量低热值合成气预混层流火焰的温度[J].能源工程, 2016, 181(2):56-61.Zhu Y Q, He Y, Yang L, et al. Premixed laminar flame temperature measurement of low heat value syngas with Rayleigh scattering method[J]. Energy Engineering, 2016, 181(2):56-61(in Chinese). doi: 10.3969/j.issn.1004-3950.2016.02.010
    [7]
    刘晶儒, 胡志云.基于激光的测量技术在燃烧流场诊断中的应用[J].中国光学, 2018(4):531-549.Liu J R, Hu Z Y. Applications of measurement techniques based on lasers in combustion flow field diag-nostics[J]. Chinese Optics, 2018(4):531-549(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201804001
    [8]
    Yalin A P, Miles R B. Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(2):210-215. doi: 10.2514/2.6510
    [9]
    Miles R, Lempert W R, Forkey J N. Laser Rayleigh scattering[J]. Measurement Science & Technology, 2001, 12(5):33-51. http://d.old.wanfangdata.com.cn/Periodical/gxxb200803031
    [10]
    [11]
    Elliot G S, Boguszko M, Carter C. Filtered Rayleigh scattering: toward multiple property measurements[R]. AIAA 2001-0301, 2001.
    [12]
    胡志云, 张振荣, 王晟, 等.用于湍流燃烧温度测量的激光诊断技术[J].气体物理, 2018, 3(1):1-11.Hu Z Y, Zhang Z R, Wang S, et al. Laser diagnostics for temperature measurements in turbulent flames[J]. Physics of Gases, 2018, 3(1):1-11(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/qtwl201801001
    [13]
    郑尧邦, 陈力, 苏铁, 等.滤波瑞利散射测温技术研究[C].中国空气动力学会测控技术专委会第六届四次学术交流会论文集, 2013.Zheng Y B, Chen L, Su T, et al. Research on temperature measurement with filter Rayleigh scattering[C]. Proceedings of the 4th Meeting of the 6th Session Academic Exchange of Measurement and Control Technology Committee of Chinese Aerodynamic Society, 2013(in Chinese).
    [14]
    Kearney S P, Beresh S J, Grasser T W. Filtered Rayleigh scattering apparatus for gas-phase and combustion temperature imaging[R]. AIAA 2003-0584, 2003.
    [15]
    George J, Jenkins T G, Srady N, et al. Simultaneous multi-property laser diagnostic for high speed flows using filtered Rayleigh scattering[R]. AIAA 2016-3110, 2016.
    [16]
    胡志云, 叶景峰, 张振荣, 等.航空发动机地面试验激光燃烧诊断技术研究进展[J].实验流体力学, 2018, 32(1):33-42.Hu Z Y, Ye J F, Zhang Z R, et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):33-42(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201801005
    [17]
    苏铁, 陈爽, 杨富荣, 等.双色平面激光诱导荧光瞬态燃烧场测温实验[J].红外与激光工程, 2014, 43(6):1750-1754.Su T, Chen S, Yang F R, et al. Investigation of temperature of transient combustion using two-line PLIF[J]. Infrared and Laser Engineering, 2014, 43(6):1750-1754(in Chinese). doi: 10.3969/j.issn.1007-2276.2014.06.010
    [18]
    Vilmart G, Dorval N, Orain M, et al. Detection of iron atoms by emission spectroscopy and laser-induced fluorescence in solid propellant flames[J]. Applied Optics, 2018, 57(14):3817-3828. doi: 10.1364/AO.57.003817
    [19]
    Lundberg H, Aldén M, Grafstrom P, et al. Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode-array de-tection[J]. Optics Letters, 1983, 8(5):241-243. doi: 10.1364/OL.8.000241
    [20]
    Medwell P, Alwahabi Z, Dally B, et al. Assessment to nonlinear two-line atomic luorescence(NTLAF) in sooty flames[J]. Applied Physics B:Lasers & Optics, 2011, 104(1):189-198.
    [21]
    Kaminski C F, Engström J, Nygren J, et al. Two-line atomic fluorescence as a temperature probe for highly sooting flames[J]. Optics Letters, 2000, 25(19):1469-1471. doi: 10.1364/OL.25.001469
    [22]
    Borggren J, Weng W, Hosseinnia A, et al. Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium[J]. Applied Physics B, 2017, 123(12):278. doi: 10.1007/s00340-017-6855-z
    [23]
    Allison S W, Gillies G T. Remote thermometry with thermographic phosphors:instrumentation and applications[J]. Review of Scientific Instruments, 1997, 68(7):2615-2650. doi: 10.1063/1.1148174
    [24]
    [25]
    王晟, 张振荣, 胡志云, 等.光学面测量技术诊断发动机燃烧场现状分析[C].全国激波与激波管学术会议, 2012.Wang S, Zhang Z R, Hu Z Y, et al. Status analysis of engine combustion field by optical surface measurement[C]. National Shock Wave and Shock Tube Academic Conference, 2012(in Chinese).
    [26]
    白书战, 赵华, 李国祥.激光诱导磷光测温技术在缸内温度测量中的应用[J].燃烧科学与技术, 2010, 16(6):515-518.Bai S Z, Zhao H, Li G X. Two-dimensional gas-phase temperature measurements in engine using laser-induced phosphorescence thermometry[J]. Journal of Combustion Science and Technology, 2010, 16(6):515-518(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201006007
    [27]
    Eckbreth A C. Laser diagnostics for combustion temperature and species[M]. New York: Taylor & Francis, 1996: 78-80.
    [28]
    Lapp M, Hartley D L. Raman scattering studies of combustion[J]. Combustion Science & Technology, 1976, 13(1/6):199-210. http://cn.bing.com/academic/profile?id=2f7b0fe4cba38f0727986147e5be0402&encoded=0&v=paper_preview&mkt=zh-cn
    [29]
    Stephenson D A. High-temperature Raman spectra of CO2 and H2O for combustion diagnostics[J]. Applied Spectroscopy, 1981, 35(6):582-584. doi: 10.1366/0003702814732148
    [30]
    Gulati A. Raman measurements at the exit of a combustor sector[J]. Journal of Propulsion and Power, 1994, 10(2):1141-1147.
    [31]
    Brockhinke A, Andresen P, Kohse-Hoinghaus K. Quantitative one dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/Air diffusion flame[J]. Applied Physics B, 1995, 61:535-545. doi: 10.1007/BF01540255
    [32]
    刘建胜, 刘晶儒, 张振荣, 等.利用拉曼散射测量燃烧场的组分浓度及温度[J].光学学报, 2000, 20(9):1263-1267.Liu J S, Liu J R, Zhang Z R, et al. Raman scattering measurements for multi-species and temperature in combustion[J]. Acta Optica Sinica, 2000, 20(9):1263-1267(in Chinese). doi: 10.3321/j.issn:0253-2239.2000.09.020
    [33]
    李国华, 胡志云, 王晟, 等.基于相干反斯托克斯拉曼散射的二维温度场扫描测量[J].光学精密工程, 2016, 24(1):14-19.Li G H, Hu Z Y, Wang S, et al. 2D scanning CARS for temperature distribution measurement[J]. Optics and Precision Engineering, 2016, 24(1):14-19(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201601003
    [34]
    Roy S, Meyer T R. Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals[J]. Applied Physics Letters, 2005, 87(26):264103. doi: 10.1063/1.2159576
    [35]
    Roy S, Gord J R, Patnaik A K. Recent advances in coherent anti-Stokes Raman scatterings pectroscopy:fundamental developments and applications in reacting flows[J]. Progress in Energy and Combustion Science, 2010, 36:280-306. doi: 10.1016/j.pecs.2009.11.001
    [36]
    Chole E D, Joseph D M, Terrence R M. Dual-pump vibrational/rotational femtosecond/picosecond coherent anti-Stokes Raman scattering temperature and species measurements[J]. Optics Letters, 2014, 39(23):6608-6611. doi: 10.1364/OL.39.006608
    [37]
    Bohlin A, Jainski C, Patterson B D, et al. Multiparameter spatio-thermochemical probing of flame-wall interactions advanced with coherent Raman imaging[J]. Proceedings of the Combustion Institute, 2016: S1540748916303200.
    [38]
    Kearney, Sean P. Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames[J]. Combustion and Flame, 2015, 162(5):1748-1758. doi: 10.1016/j.combustflame.2014.11.036
    [39]
    Slabaugh C D, Dennis C N, Boxx I, et al. 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 2. Analysis of swirl flame dynamics[J]. Combustion & Flame, 2016, 173:454-467. http://cn.bing.com/academic/profile?id=702174d124b3d4106d6a85b61206bfef&encoded=0&v=paper_preview&mkt=zh-cn
    [40]
    Richardson D R, Lucht R P, Kulatilaka W D, et al. Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry[J]. Applied Physics B, 2011, 104(3):699-714. doi: 10.1007/s00340-011-4489-0
    [41]
    Stauffer H U, Miller J D, Slipchenko M N, et al. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse[J]. The Journal of Chemical Physics, 2014, 140(2):024316. doi: 10.1063/1.4860475
    [42]
    Lucht R P, Kinnius P J, Roy S, et al. Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions[J]. Journal of Chemical Physics, 2007, 127(4):044316. doi: 10.1063/1.2751184
    [43]
    Richardson D R, Stauffer H U, Roy S, et al. Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry[J]. Applied Optics, 2017, 56(11):E37. doi: 10.1364/AO.56.000E37
    [44]
    熊姹, 范玮.应用燃烧诊断学[M].西安: 西北工业出版社, 2014: 106-107.Xiong C, Fan W. Applied combustion diagnostics[M]. Xi'an: Northwestern Polytechnical University Press, 2014: 106-107(in Chinese).
    [45]
    Bultitude K, Stevens R, Ewart P. High-resolution degenerate four-wave-mixing spectroscopy of OH in a flame with a novel single-mode tunable laser[J]. Applied Physics B (Lasers and Optics), 2004, 79(6):767-773. doi: 10.1007/s00340-004-1641-0
    [46]
    关小伟, 刘晶儒, 黄梅生, 等. FB-DFWM技术的实验研究[J].火炸药学报, 2006, 29(4):68-70.Guan X W, Liu J R, Huang M S, et al. Experimental research on forward-box degenerate four-wave mixing technology[J]. Chinese Journal of Explosive & Propellants, 2006, 29(4):68-70(in Chinese). doi: 10.3969/j.issn.1007-7812.2006.04.019
    [47]
    杨斌, 齐宗满, 杨荟楠, 等.基于TDLAS的燃烧流场速度测量方法[J].燃烧科学与技术, 2015, 21(6):516-520.Yang B, Qi Z M, Yang H N, et.al. Velocity measurement method based on TDLAS for combustion flow[J]. Journal of Combustion Science and Technology, 2015, 21(6):516-520(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201506007
    [48]
    陈帆, 陶波, 黄斌, 等.基于TDLAS的脉冲爆震火箭发动机尾焰参数测量[J].燃烧科学与技术, 2013(6):501-506.Chen F, Tao B, Huang B, et al. Measurement of PDRE plume based on TDLAS technology[J]. Journal of Combustion Science and Technology, 2013(6):501-506(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201306004
    [49]
    陶波, 王晟, 胡志云, 等. TDLAS技术二次谐波法测量发动机温度[J].实验流体力学, 2014, 29(2):68-72.Tao B, Wang S, Hu Z Y, et al. Engine temperature measurement based on TDLAS second harmonic techni-que[J]. Journal of Experiments in Fluid Mechanics. 2014, 29(2):68-72(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201502012
    [50]
    Zhou X, Liu X, Jeffries J B, et al. Development of sensor for temperature and water concentration in combustion gases using a single tunable diode laser[J]. Measurement Science and Technology, 2003, 14(8):1459-1468. doi: 10.1088/0957-0233/14/8/335
    [51]
    李金义, 杜金辉.直接吸收光谱时分复用技术双线测温[J].激光杂志, 2015, 36(8):58-62.Li J Y, Du J H. Direct absorption spectrum time division multiplexing technology double line temperature measure-ment[J]. Laser Journal, 2015, 36(8):58-62(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgzz201508016
    [52]
    刘晶儒, 胡志云, 张振, 等.激光光谱技术在燃烧流场诊断中的应用[J].光学精密工程, 2011, 19(2):284-295.Liu J R, Hu Z Y, Zhang Z, et al. Laser spectroscopy applied to combustion diagnostics[J]. Optics and Precision Engineering, 2011, 19(2):284-295(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201102010
    [53]
    Koch A, Voges H, Andresen P, et al. Planar imaging of a laboratory flame and of internal combustion in an automobile engine using UV Rayleigh and fluorescence light[J]. Applied Physics B:Lasers and Optics, 1993, 56(3):177-184. doi: 10.1007/BF00332197
    [54]
    崔海滨, 王飞, 李玫仪.基于TDLAS技术测量高温环境中CO2的温度和浓度[J].激光与光电子学进展, 2018, 55(5):53003-1.Cui H B, Wang F, Li M Y. Measurement of CO2 temperature and concentration in high temperature environment based on tunable diode laser absorption spectroscopy[J]. Laser & Optoelectronics Progress, 2018, 55(5):53003-1(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201805055
    [55]
    宋俊玲, 洪延姬, 王广宇, 等.基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究[J].物理学报, 2012, 61(24):240702.Song J L, Hong Y J, Wang G Y, et al. Reconstruction of gas temperature and concentration in combustion field based on laser absorption spectroscopy[J]. Acta Physics Sinica, 2012, 61(24):240702(in Chinese). doi: 10.7498/aps.61.240702
    [56]
    殷可为, 胥頔, 张龙, 等. TDLAS技术用于燃烧场气体温度和浓度重建研究[J].光电工程, 2016(12):20-27.Yin K W, Xu D, Zhang L, et al. 2D reconstruction for gas temperature and concentration based on TDLAS[J]. Opto-Electronic Engineering, 2016(12):20-27(in Chinese). doi: 10.3969/j.issn.1003-501X.2016.12.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (250) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return