主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司
陈柏宁, 谢芳芳, 孟旭辉. 自适应多保真数据融合的神经网络模型[J]. 气体物理, 2024, 9(4): 1-8. DOI: 10.19527/j.cnki.2096-1642.1114
引用本文: 陈柏宁, 谢芳芳, 孟旭辉. 自适应多保真数据融合的神经网络模型[J]. 气体物理, 2024, 9(4): 1-8. DOI: 10.19527/j.cnki.2096-1642.1114
CHEN Baining, XIE Fangfang, MENG Xuhui. Adaptive Multi-Fidelity Composite Deep Neural Networks[J]. PHYSICS OF GASES, 2024, 9(4): 1-8. DOI: 10.19527/j.cnki.2096-1642.1114
Citation: CHEN Baining, XIE Fangfang, MENG Xuhui. Adaptive Multi-Fidelity Composite Deep Neural Networks[J]. PHYSICS OF GASES, 2024, 9(4): 1-8. DOI: 10.19527/j.cnki.2096-1642.1114

自适应多保真数据融合的神经网络模型

Adaptive Multi-Fidelity Composite Deep Neural Networks

  • 摘要: 数据驱动的深度学习建模在力学、材料等不同学科中得到了较多应用。深度学习建模的精度依赖大量高保真数据。在实际应用中,高保真数据往往是少量且昂贵的,而低保真数据却是成本低廉且数量较多的。当高保真数据量过少时,深度学习建模精度较低。近期发展的多保真深度神经网络, 通过融合不同保真度的数据,在高保真数据较少时,依然保持了较高的建模精度。然而,已有的多保真深度神经网络模型的精度较为依赖针对模型参数的正则化调节。当添加的正则化过强时,网络对非线性关联式的拟合能力不足;当添加的正则化强度不够时,在学习多保真数据间的线性关联关系时又会出现过拟合现象。两者都会严重影响模型的预测精度。在缺乏高保真验证数据集时,较难得到最优的正则化系数。为此,通过改进已有多保真网络模型的损失函数,引入一个与线性关联式相关的参数,提出了自适应多保真数据融合的神经网络模型。该模型能根据给定数据自适应地拟合不同保真度数据间的线性或非线性关系,对正则化依赖较小,从而提高了建模的鲁棒性。在多个标准测试案例及实际应用的翼型气动参数的预测中,该模型均能表现出较高的精度和稳定性。

     

    Abstract: Data-driven deep learning modeling has been applied in different disciplines such as mechanics and materials. The computational accuracy of deep learning modeling requires a large amount of high-fidelity data. In many real-world applications, only a small number of expensive high-fidelity data are available while the cheap low-fidelity data are sufficient, which leads to poor accuracy as the number of high-fidelity data is not sufficient. Recently developed multi-fidelity deep neural networks achieve high accuracy when the number of high-fidelity data is small by fusing multi-fidelity data. However, the accuracy of existing multi-fidelity deep neural networks depends on the regularization of the hyperparameters. When the regularization is too strong, the model has difficulty in fitting nonlinear correlations; while the regularization is too small, overfitting occurs for cases with linear correlation between multi-fidelity data. Generally, high-fidelity data for validation in multi-fidelity modeling are not available since the number of high-fidelity data is quite small. The optimal regularization is difficult to obtain. To this end, we proposed an improved multi-fidelity model, referred to as adaptive multi-fidelity compo-site neural networks, by modifying the loss function of existing multi-fidelity neural networks. This model can adaptively approximate the linear or nonlinear correlation between multi-fidelity data with less dependence on the regularization coefficients, which improves the robustness of modeling. The proposed model shows good accuracy and robustness in several benchmark examples as well as a demo application of the aerodynamics.

     

/

返回文章
返回