主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双喉道推力矢量喷管内外流特性

何敬玉 杨志晨 梁温馨 欧平 董金刚

何敬玉, 杨志晨, 梁温馨, 欧平, 董金刚. 双喉道推力矢量喷管内外流特性[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1101
引用本文: 何敬玉, 杨志晨, 梁温馨, 欧平, 董金刚. 双喉道推力矢量喷管内外流特性[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1101
HE Jingyu, YANG Zhichen, LIANG Wenxin, OU Ping, DONG Jingang. Flow Characteristics of Dual Throat Thrust Vectoring Nozzles[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1101
Citation: HE Jingyu, YANG Zhichen, LIANG Wenxin, OU Ping, DONG Jingang. Flow Characteristics of Dual Throat Thrust Vectoring Nozzles[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1101

双喉道推力矢量喷管内外流特性

doi: 10.19527/j.cnki.2096-1642.1101
详细信息
    作者简介:

    何敬玉(1985-) 男, 博士, 研究员, 研究方向为矢量喷管内外流特性和气动噪声研究. E-mail:hejingyu11@126.com

  • 中图分类号: TB52+5

Flow Characteristics of Dual Throat Thrust Vectoring Nozzles

  • 摘要: 对二元双喉道推力矢量喷管内流特性进行了研究.针对一种简化的飞机后体模型,利用数值计算与风洞试验结合的方法研究了后机身一体化设计对矢量喷管内外流特性的影响,进一步分析了矢量喷流干扰效应对飞机后体的影响.研究结果表明,气流在喷管空腔内的分离导致了喷管上下壁面的压力差,而该压力差是双喉道喷管推力矢量产生的主要原因;随着二次流流量的增加,喷管上下壁面压差逐渐变大,喷管推力矢量角增加;无来流时,在主喷管落压比 NPR=4.0,二次流落压比 NPRs=4.8时,双喉道喷管具有的最大矢量角为 16.6°;在来流 Mach数Ma=0.4时,具有的最大矢量角为 11.2°;喷管外罩表面声载荷频率主要集中在 900 Hz以下,并且外罩型面变化剧烈处具有最高的噪声幅值.喷流矢量角的变化对噪声峰值频率没有影响,仅对下壁面 1 000 Hz以下幅值有影响,噪声最大频谱幅值影响量为 2 dB.

     

  • [1] Gal-Or B. Fundamental concepts of vectored propulsion[J]. Journal of Propulsion and Power, 1990, 6(6):747-757.
    [2] 范文正, 李明. 推力矢量喷管现状和发展趋势[J]. 航空科学技术, 2006(1):21-22. Fan W Z, Li M. Status and trends of the thrust-vectoring nozzle[J]. Aeronautical Science and Technology, 2006(1):21-22(in Chinese).
    [3] Rakesh R B, Varghese S. Fluidic thrust vectoring of engine nozzle[C]. Proceedings of the International Conference on Modern Research in Aerospace Engineering. Heidelberg:Springer, 2018.
    [4] Alvi F S, Strykowski P J, Krothapalli A, et al. Vectoring thrust in multiaxes using confined shear layers[J]. Journal of Fluids Engineering, 2000, 122(1):3-13.
    [5] Sekar T C, Kushari A, Mody B, et al. Fluidic thrust vectoring using transverse jet injection in a converging nozzle with aft-deck[J]. Experimental Thermal and Fluid Science, 2017, 86:189-203.
    [6] Hamedi-Estakhrsar M H, Mahdavy-Moghaddam H. Experimental evaluation and numerical simulation of performance of the bypass dual throat nozzle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2021, 235(7):768-781.
    [7] 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4):8-15. Xiao Z Y, Jiang X, Mou B, et al. Advances in fluidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4):8-15(in Chinese).
    [8] Afridi S, Khan T A, Shah S I, et al. Techniques of fluidic thrust vectoring in jet engine nozzles:a review[J]. Energies, 2023, 16(15):5721.
    [9] Deere K A. Summary of fluidic thrust vectoring research at NASA Langley Research Center[R]. AIAA 20033800, 2003.
    [10] Wing D J. Static investigation of two fluidic thrustvectoring concepts on a two-dimensional convergent-divergent nozzle[R]. NASA-TM-4574, 1994.
    [11] Anderson C J, Giuliano V J, Wing D J. Investigation of hybrid fluidic/mechanical thrust vectoring for fixed-exit exhaust nozzles[R]. AIAA 1997-3148, 1997.
    [12] Miller D N, Yagle P J, Hamstra J W. Fluidic throat skewing for thrust vectoring in fixed-geometry nozzles[R]. AIAA 1999-0365, 1999.
    [13] Flamm J D. Experimental study of a nozzle using fluidic counterflow for thrust vectoring[R]. AIAA 1998-3255, 1998.
    [14] Yagle P J, Miller D N, Ginn K B, et al. Demonstration of fluidic throat skewing for thrust vectoring in structurally fixed nozzles[C]. ASME Turbo Expo 2000:Power for Land, Sea, and Air. Munich:ASME, 2000.
    [15] Deere K A, Berrier B L, Flamm J D, et al. Computational study of fluidic thrust vectoring using separation control in a nozzle[R]. AIAA 2003-3803, 2003.
    [16] 何敬玉, 陈强, 董金刚, 等. 双喉道推力矢量喷管的气动性能数值模拟[J]. 南京航空航天大学学报, 2017, 49(S1):16-23. He J Y, Chen Q, Dong J G, et al. Numerical investigation of aerodynamic performance on dual throat thrust vectoring nozzle[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(S1):16-23(in Chinese).
    [17] 谭慧俊, 陈智. 二元双喉道射流推力矢量喷管的数值模拟研究[J]. 航空动力学报, 2007, 22(10):16781684. Tan H J, Chen Z. A computational study of 2-D dualthroat fluidic thrust-vectoring nozzles[J]. Journal of Aerospace Power, 2007, 22(10):1678-1684(in Chinese).
    [18] 汪明生, 杨平. 双喉道推力矢量喷管的内流特性研究[J]. 推进技术, 2008, 29(5):566-572. Wang M S, Yang P. Study of dual throat nozzle internal now characteristic[J]. Journal of Propulsion Technology, 2008, 29(5):566-572(in Chinese).
    [19] Deere K A, Berrier B L, Flamm J D, et al. A computational study of a dual throat fluidic thrust vectoring nozzle concept[R]. AIAA 2005-3502, 2005.
    [20] Deere K A. Computational investigation of the aerodynamic effects on fluidic thrust vectoring[R]. AIAA 2000-3598, 2000.
    [21] Wing D J, Giuliano V J. Fluidic thrust vectoring of an axisymmetric exhaust nozzle at static conditions[R]. ASME FEDSM 1997-3228, 1997.
    [22] Chiarelli C, Johnsen R K, Shieh C F, et al. Fluidic scale model multi-plane thrust vector control test results[R]. AIAA 1993-2433, 1993.
    [23] Hunter C A, Deere K A. Computational investigation of fluidic counterflow thrust vectoring[R]. AIAA 1999-2669, 1999.
    [24] Flamm J D, Deere K A, Berrier B L, et al. Experimental study of a dual-throat fluidic thrust-vectoring nozzle concept[R]. AIAA 2005-3503, 2005.
    [25] Flamm J D, Deere K A, Mason M L, et al. Experimental study of an axisymmetric dual throat fluidic thrust vectoring nozzle for supersonic aircraft application[R]. AIAA 2007-5084, 2007.
    [26] Flamm J D, Deere K A, Mason M L, et al. Design enhancements of the two-dimensional, dual throat fluidic thrust vectoring nozzle concept[R]. AIAA 2006-3701, 2006.
    [27] Bellandi E G, Slippey A J. Preliminary analysis and design enhancements of a dual-throat FTV nozzle concept[R]. AIAA 2009-3900, 2009.
    [28] Afridi S, Khan T A, Shah S I, et al. Numerical investigation on the thrust vectoring performance of bypass dual throat nozzle[J]. Energies, 2023, 16(2):594.
    [29] 卿太木, 王恒, 廖华琳. 轴对称双喉道气动矢量喷管内特性数值模拟[J]. 燃气涡轮试验与研究, 2014, 27(2):14-20. Qing T M, Wang H, Liao H L. Internal performance numerical study on geometrical parameters of axisymmetric dual-throat fluidic thrust-vectoring nozzles[J]. Gas Turbine Experiment and Research, 2014, 27(2):14-20(in Chinese).
    [30] 李耀华, 李建强, 杨党国, 等. 二元双喉道射流推力矢量喷管流动参数影响的数值研究[J]. 空气动力学学报, 2015, 33(2):211-217. Li Y H, Li J Q, Yang D G, et al. Numerical study of a dual-throat fluidic thrust-vectoring nozzle[J]. Acta Aerodynamica Sinica, 2015, 33(2):211-217(in Chinese).
    [31] 汤伟, 黄勇, 傅澔. 推力矢量对飞机大迎角动态气动特性的影响[J]. 航空学报, 2018, 39(4):88-94. Tang W, Huang Y, Fu H. Effect of thrust vector on dynamic aerodynamic characteristics of aircraft at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):88-94(in Chinese).
    [32] Bowers A H, Pahle J W. Thrust vectoring on the NASA F-18 high alpha research vehicle[R]. NASA ATM-4771, 1996.
  • 加载中
计量
  • 文章访问数:  18
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-25
  • 修回日期:  2024-01-23
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回