主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面局部动态扰动作用下湍流边界层多尺度相互作用

张宇 唐湛棋 崔晓通 姜楠

张宇, 唐湛棋, 崔晓通, 姜楠. 壁面局部动态扰动作用下湍流边界层多尺度相互作用[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1099
引用本文: 张宇, 唐湛棋, 崔晓通, 姜楠. 壁面局部动态扰动作用下湍流边界层多尺度相互作用[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1099
ZHANG Yu, TANG Zhan-qi, CUI Xiao-tong, JIANG Nan. Scale Interactions of Turbulent Boundary Layer Flows Under Local Dynamic Wall Disturbance[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1099
Citation: ZHANG Yu, TANG Zhan-qi, CUI Xiao-tong, JIANG Nan. Scale Interactions of Turbulent Boundary Layer Flows Under Local Dynamic Wall Disturbance[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1099

壁面局部动态扰动作用下湍流边界层多尺度相互作用

doi: 10.19527/j.cnki.2096-1642.1099
基金项目: 

中德科学基金(GZ1575)

国家自然科学基金(12272265, 12332017, 12202310)

详细信息
    作者简介:

    张宇(1997-) 男, 硕士, 主要研究方向为湍流流动机理及控制。E-mail:2022201317@tju.edu.cn

    通讯作者:

    唐湛棋(1987-) 男, 副教授, 主要研究方向为湍流流动机理及控制。E-mail:zhanqitang@tju.edu.cn

  • 中图分类号: O29; TP183

Scale Interactions of Turbulent Boundary Layer Flows Under Local Dynamic Wall Disturbance

  • 摘要: 对比分析大尺度高速/低速来流背景下,多种尺度间相互作用,讨论主动减阻控制系统间歇输入能量实现流场减阻控制的可行性。实验使用压电振子对湍流边界层施加周期性局部扰动,同步采集压电振子上游固定探针和下游移动探针(沿法向高度移动)的流场信息。对压电振子上、下游不同尺度脉动速度信号做相关性分析,确定上下游信号的时空关系。通过预乘能谱图确定扰动信号及其高次谐波,划分不同信号尺度。着重讨论大尺度高速/低速来流背景下,大尺度与扰动尺度、扰动尺度与小尺度的相互作用,发现大尺度高速背景对扰动信号有幅值调制作用。大尺度高速/低速来流背景下,扰动信号与小尺度信号存在固定的相位对应关系,且不受来流背景影响。明确以压电振子对流场进行主动间歇性控制时,在大尺度高速来流背景下施加局部动态扰动具有更好的调制控制效果。

     

  • [1] Blackwelder R F, Eckelmann H. Streamwise vortices as-sociated with the bursting phenomenon[J]. Journal of Fluid Mechanics, 1979, 94(3):577-594.
    [2] Kline S J, Reynolds W C, Schraub F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1967, 30(4):741-773.
    [3] Jiménez J, Pinelli A. The autonomous cycle of near-wall turbulence[J]. Journal of Fluid Mechanics, 1999, 389:335-359.
    [4] Smits A J, Mckeon B J, Marusic I. High-Reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43:353-375.
    [5] Mathis R, Hutchins N, Marusic I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2009, 628:311-337.
    [6] Hutchins N, Marusic I. Large-scale influences in near-wall turbulence[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 365(1852):647-664.
    [7] Townsend A A. The structure of turbulent shear flow[M]. Cambridge:Cambridge University Press, 1976.
    [8] Yao W G, Zhang H, Jiang D W, et al. The transformation mechanisms of vortex structures on vortex-induced vibration of an elastically mounted sphere by Lorentz force[J]. Ocean Engineering, 2023, 280:114436.
    [9] Rao K N, Narasimha R, Narayanan M A. The 'bursting' phenomenon in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1971, 48(2):339-352.
    [10] Alfredsson P H, Johansson A V. Time scales in turbulent channel flow[J]. Physics of Fluids, 1984, 27(8):1974-1981.
    [11] Bandyopadhyay P R, Hussain A K. The coupling between scales in shear flows[J]. Physics of Fluids, 1984, 27(9):2221-2228.
    [12] Bernardini M, Pirozzoli S. Inner/outer layer interactions in turbulent boundary layers:A refined measure for the large-scale amplitude modulation mechanism[J]. Physics of Fluids, 2017, 2(4):044603.
    [13] Ganapathisubramani B, Hutchins N, Monty J P, et al. Amplitude and frequency modulation in wall turbulence[J]. Journal of Fluid Mechanics, 2012, 712:61-91.
    [14] Baars W J, Talluru K M, Hutchins N, et al. Wavelet analysis of wall turbulence to study large-scale modulation of small scales[J]. Experiments in Fluids, 2015, 56(10):188.
    [15] Dogan E, Örlü R, Gatti D, et al. Quantification of amplitude modulation in wall-bounded turbulence[J]. Fluid Dynamics Research, 2019, 51(1):011408.
    [16] Jacobi I, McKeon B J. Phase relationships between large and small scales in the turbulent boundary layer[J]. Experiments in Fluids, 2013, 54(3):1481.
    [17] Duvvuri S, Mckeon B J. Triadic scale interactions in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2015, 767:R4.
    [18] Jacobi I, Mckeon B J. Dynamic roughness perturbation of a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2011, 688:258-296.
    [19] Jacobi I, Mckeon B J. Phase-relationships between scales in the perturbed turbulent boundary layer[J]. Journal of Turbulence, 2017, 18(12):1120-1143.
    [20] 张奕, 潘翀, 窦建宇, 等. 微型涡流发生器影响下的湍流边界层流场与摩阻特性[J]. 实验流体力学, 2023, 37(4):48-58. Zhang Y, Pan C, Dou J Y, et al. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4):48-58(in Chinese).
    [21] 范云涛, 张阳, 叶志贤, 等. 微吹气对湍流平板边界层流动特性的影响及其减阻机理[J]. 航空学报, 2020, 41(10):123814. Fan Y T, Zhang Y, Ye Z X, et al. Micro-blowing:Efect on flow characteristics in turbulent flat plate boundary layer and drag reduction mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):123814(in Chinese).
    [22] 赵志杰, 罗振兵, 刘杰夫, 等. 合成双射流逆向吹吸控制对翼型流动特性影响[J]. 空气动力学学报, 2021, 39(6):165-174. Zhao Z J, Luo Z B, Liu J F, et al. Effect of reverse blowing and suction control by dual synthetic jets on airfoil flow characteristics[J]. Acta Aerodynamica Sinica, 2021, 39(6):165-174(in Chinese).
    [23] Zheng X B, Jiang N, Zhang H. Predetermined control of turbulent boundary layer with a piezoelectric oscillator[J]. Chinese Physics B, 2016, 25(1):014703.
    [24] Cui X T, Jiang N, Tang Z Q. Effect of high- or low-speed fluctuations on the small-scale bursting events in an active control experiment[J]. Chinese Physics B, 2021, 30(1):014702.
    [25] Tang Z Q, Jiang N. The effect of a synthetic input on small-scale intermittent bursting events in near-wall turbulence[J]. Physics of Fluids, 2020, 32(1):015110.
    [26] Tang Z Q, Ma X Y, Jiang N, et al. Local dynamic perturbation effects on the scale interactions in wall turbulence[J]. Journal of Turbulence, 2021, 22(3):208-230.
    [27] Rebbeck H, Choi K S. A wind-tunnel experiment on realtime opposition control of turbulence[J]. Physics of Fluids, 2006, 18(3):035103.
    [28] Hutchins N, Nickels T B, Marusic I, et al. Hot-wire spatial resolution issues in wall-bounded turbulence[J]. Journal of Fluid Mechanics, 2009, 635:103-136.
    [29] 高南, 刘玄鹤. 免标定热线风速测量方法的初步研究[J]. 实验流体力学, 2023, 37(5):1-8. Gao N, Liu X H. A preliminary study on calibration-free hot-wire anemometry method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5):1-8(in Chinese).
    [30] 申俊琦, 王建杰, 潘翀. 平板湍流边界层瞬时摩擦阻力的光学测量和统计分析[J]. 气体物理, 2020, 5(5):13-23. Shen J Q, Wang J J, Pan C. Optical measurement and statistical analysis of instantaneous wall-shear stress in a turbulent boundary layer[J]. Physics of Gases, 2020, 5(5):13-23(in Chinese).
    [31] Kreplin H P, Eckelmann H. Propagation of perturbations in the viscous sublayer and adjacent wall region[J]. Journal of Fluid Mechanics, 1979, 95(2):305-322.
    [32] Johansson A V, Alfredsson P H, Kim J. Evolution and dynamics of shear-layer structures in near-wall turbulence[J]. Journal of Fluid Mechanics, 1991, 224:579-599.
  • 加载中
计量
  • 文章访问数:  21
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2023-12-26
  • 网络出版日期:  2024-02-01

目录

    /

    返回文章
    返回