主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mach数和壁面温度对HyTRV边界层转捩的影响

章录兴 王光学 杜磊 余发源 张怀宝

章录兴, 王光学, 杜磊, 余发源, 张怀宝. Mach数和壁面温度对HyTRV边界层转捩的影响[J]. 气体物理, 2024, 9(2): 9-20. doi: 10.19527/j.cnki.2096-1642.1098
引用本文: 章录兴, 王光学, 杜磊, 余发源, 张怀宝. Mach数和壁面温度对HyTRV边界层转捩的影响[J]. 气体物理, 2024, 9(2): 9-20. doi: 10.19527/j.cnki.2096-1642.1098
ZHANG Luxing, WANG Guangxue, DU Lei, YU Fayuan, ZHANG Huaibao. Effects of Mach Number and Wall Temperature on HyTRV Boundary Layer Transition[J]. PHYSICS OF GASES, 2024, 9(2): 9-20. doi: 10.19527/j.cnki.2096-1642.1098
Citation: ZHANG Luxing, WANG Guangxue, DU Lei, YU Fayuan, ZHANG Huaibao. Effects of Mach Number and Wall Temperature on HyTRV Boundary Layer Transition[J]. PHYSICS OF GASES, 2024, 9(2): 9-20. doi: 10.19527/j.cnki.2096-1642.1098

Mach数和壁面温度对HyTRV边界层转捩的影响

doi: 10.19527/j.cnki.2096-1642.1098
基金项目: 

国家重大项目 GJXM92579

广东省自然科学基金-面上项目 2023A1515010036

中山大学中央高校基本科研业务费专项资金 22qntd0705

详细信息
    作者简介:

    章录兴(1998—)男, 硕士, 主要研究方向为高超声速空气动力学。E-mail: 18470158082@163.com

    通讯作者:

    张怀宝(1985-)男, 副教授, 主要研究方向为空气动力学。E-mail: zhanghb28@mail.sysu.edu.cn

  • 中图分类号: V211;V411

Effects of Mach Number and Wall Temperature on HyTRV Boundary Layer Transition

  • 摘要: 典型的高超声速飞行器流场存在着复杂的转捩现象, 其对飞行器的性能有着显著的影响。针对HyTRV这款接近真实高超声速飞行器的升力体模型, 采用数值模拟方法, 研究Mach数和壁面温度对HyTRV转捩的影响规律。采用课题组自研软件开展数值计算, Mach数的范围为3~8, 壁面温度的范围为150~900 K。首先对γ-$\mathop R\limits^ \sim $eθt转捩模型和SST湍流模型进行了高超声速修正: 将压力梯度系数修正、高速横流修正引入到γ-$\mathop R\limits^ \sim $eθt转捩模型, 并对SST湍流模型闭合系数β*β进行可压缩修正; 然后开展了网格无关性验证, 通过与实验结果对比, 确认了修正后的数值方法和软件平台; 最终开展Mach数和壁面温度对HyTRV边界层转捩规律的影响研究。计算结果表明, 转捩区域主要集中在上表面两侧、下表面中心线两侧; 增大来流Mach数, 上下表面转捩起始位置均大幅后移, 湍流区大幅缩小, 但仍会存在, 同时上表面层流区摩阻系数不断增大, 下表面湍流区摩阻系数不断减小; 升高壁面温度, 上下表面转捩起始位置先前移, 然后快速后移, 最终湍流区先后几乎消失。

     

  • 图  1  HyTRV外形

    Figure  1.  Shape of HyTRV

    图  2  截取位置示意图

    Figure  2.  Schematic diagram of the interception location

    图  3  采用3套网格计算得到的摩阻对比

    Figure  3.  Comparison of the friction drag calculated using three sets of grids

    图  4  下表面计算结果和实验结果对比

    Figure  4.  Comparison of the calculated and experimental results on the lower surface

    图  5  不同截面位置处的压力云图

    Figure  5.  Pressure contours at different cross-section locations

    图  6  不同截面位置处的流向速度云图

    Figure  6.  Streamwise velocity contours at different cross-section locations

    图  7  上下表面摩阻分布云图

    Figure  7.  Friction coefficient contours on the upper and lower surfaces

    图  8  不同Mach数条件下摩阻系数分布云图

    Figure  8.  Friction coefficient contours at different Mach numbers

    图  9  不同位置摩阻系数随Mach数的变化

    Figure  9.  Variation of friction coefficient with Mach number at different locations

    图  10  不同壁面温度条件下摩阻系数分布云图

    Figure  10.  Friction coefficient contours at different wall temperature conditions

    图  11  不同位置摩阻系数随壁面温度的变化

    Figure  11.  Variation of friction coefficient with wall temperature at different locations

    图  12  不同位置湍动能剖面随壁面温度的变化

    Figure  12.  Variation of turbulent kinetic energy with wall temperature at different locations

  • [1] Obering Ⅲ H, Heinrichs R L. Missile defense for great power conflict: outmaneuvering the China threat[J]. Strategic Studies Quarterly, 2019, 3(4): 37-56.
    [2] Cheng C, Wu J H, Zhang Y L, et al. Aerodynamics and dynamic stability of micro-air-vehicle with four flapping wings in hovering flight[J]. Advances in Aerodynamics, 2020, 2(3): 5.
    [3] Bertin J J, Cummings R M. Fifty years of hypersonics: where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6/7): 511-536.
    [4] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201703001.htm

    Chen J Q, Tu G H, Zhang Y F, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201703001.htm
    [5] 段毅, 姚世勇, 李思怡, 等. 高超声速边界层转捩的若干问题及工程应用研究进展综述[J]. 空气动力学学报, 2020, 38(2): 391-403. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002022.htm

    Duan Y, Yao S Y, Li S Y, et al. Review of progress in some issues and engineering application of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2): 391-403(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002022.htm
    [6] Zhang Y F, Zhang Y R, Chen J Q, et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver chant 2.0[R]. AIAA 2017-2409, 2017.
    [7] Krause M, Behr M, Ballmann J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model[R]. AIAA 2008-2598, 2008.
    [8] Yi M R, Zhao H Y, Le J L. Hypersonic natural and forced transition simulation by correlation-based intermittency[R]. AIAA 2017-2337, 2017.
    [9] 向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9): 625711. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202109011.htm

    Xiang X H, Zhang Y F, Yuan X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625711(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202109011.htm
    [10] McDaniel R D, Nance R P, Hassan H A. Transition onset prediction for high-speed flow[J]. Journal of Spacecraft and Rockets, 2000, 37(3): 304-309. doi: 10.2514/2.3579
    [11] Papp J L, Dash S M. Rapid engineering approach to modeling hypersonic laminar-to-turbulent transitional flows[J]. Journal of Spacecraft and Rockets, 2005, 42(3): 467-475. doi: 10.2514/1.1854
    [12] Juliano T J, Schneider S P. Instability and transition on the HIFiRE-5 in a Mach-6 quiet tunnel[R]. AIAA 2010-5004, 2010.
    [13] 杨云军, 马汉东, 周伟江. 高超声速流动转捩的数值研究[J]. 宇航学报, 2006, 27(1): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200601018.htm

    Yang Y J, Ma H D, Zhou W J. Numerical research on supersonic flow transition[J]. Journal of Astronautics, 2006, 27(1): 85-88(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200601018.htm
    [14] 袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2): 286-293. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802014.htm

    Yuan X X, He K, Chen J Q, et al. Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2): 286-293(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802014.htm
    [15] 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202106020.htm

    Chen J Q, Tu G H, Wan B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202106020.htm
    [16] 陈坚强, 刘深深, 刘智勇, 等. 用于高超声速边界层转捩研究的标模气动布局及设计方法. 中国: 109969374B[P]. 2021-05-18.

    Chen J Q, Liu S S, Liu Z Y, et al. Standard model aerodynamic layout and design method for hypersonic boundary layer transition research. CN, 109969374B[P]. 2021-05-18(in Chinese).
    [17] Liu S S, Yuan X X, Liu Z Y, et al. Design and transition characteristics of a standard model for hypersonic boundary layer transition research[J]. Acta Mechanica Sinica, 2021, 37(11): 1637-1647. doi: 10.1007/s10409-021-01136-5
    [18] Chen X, Dong S W, Tu G H, et al. Boundary layer transition and linear modal instabilities of hypersonic flow over a lifting body[J]. Journal of Fluid Mechanics, 2022, 938(408): A8.
    [19] Qi H, Li X L, Yu C P, et al. Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV[J]. Advances in Aerodynamics, 2021, 3(1): 31. doi: 10.1186/s42774-021-00082-x
    [20] 万兵兵, 陈曦, 陈坚强, 等. 三维边界层转捩预测HyTEN软件在高超声速典型标模中的应用[J]. 空天技术, 2023(1): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD202301015.htm

    Wan B B, Chen X, Chen J Q, et al. Applications of HyTEN software for predicting three-dimensional boundary-layer transition in typical hypersonic models[J]. Aerospace Technology, 2023(1): 150-158(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD202301015.htm
    [21] Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables—Part Ⅰ: model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413-422. doi: 10.1115/1.2184352
    [22] Langtry R B, Menter F R, Likki S R, et al. A correlation-based transition model using local variables—Part Ⅱ: test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3): 423-434. doi: 10.1115/1.2184353
    [23] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. doi: 10.2514/1.42362
    [24] 孟德虹, 张玉伦, 王光学, 等. γ-Reθ转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201105004.htm

    Meng D H, Zhang Y L, Wang G X, et al. Application of γ-Reθ transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 792-801(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201105004.htm
    [25] 牟斌, 江雄, 肖中云, 等. γ-Reθ转捩模型的标定与应用[J]. 空气动力学学报, 2013, 31(1): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301019.htm

    Mou B, Jiang X, Xiao Z Y, et al. Implementation and caliberation of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2013, 31(1): 103-109(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301019.htm
    [26] 郭隽, 刘丽平, 徐晶磊, 等. γ-$\tilde{Re}_{\theta {\rm t}}$转捩模型在跨声速涡轮叶栅中的应用[J]. 推进技术, 2018, 39(9): 1994-2001. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201904004.htm

    Guo J, Liu L P, Xu J L, et al. Application of γ-$\tilde{Re}_{\theta {\rm t}}$ transition model in transonic turbine cascades[J]. Journal of Propulsion Technology, 2018, 39(9): 1994-2001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201904004.htm
    [27] 郑赟, 李虹杨, 刘大响. γ-Reθ转捩模型在高超声速下的应用及分析[J]. 推进技术, 2014, 35(3): 296-304. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201403003.htm

    Zheng Y, Li H Y, Liu D X. Application and analysis of γ-Reθ transition model in hypersonic flow[J]. Journal of Propulsion Technology, 2014, 35(3): 296-304(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201403003.htm
    [28] 孔维萱, 阎超, 赵瑞. γ-Reθ模式应用于高速边界层转捩的研究[J]. 空气动力学学报, 2013, 31(1): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301022.htm

    Kong W X, Yan C, Zhao R. γ-Reθ model research for high-speed boundary layer transition[J]. Acta Aerodynamica Sinica, 2013, 31(1): 120-126(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301022.htm
    [29] 张毅锋, 何琨, 张益荣, 等. Menter转捩模型在高超声速流动模拟中的改进及验证[J]. 宇航学报, 2016, 37(4): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604004.htm

    Zhang Y F, He K, Zhang Y R, et al. Improvement and validation of Menter's transition model for hypersonic flow simulation[J]. Journal of Astronautics, 2016, 37(4): 397-402(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604004.htm
    [30] Langtry R B, Sengupta K, Yeh D T, et al. Extending the γ-Reθ correlation based transition model for crossflow effects(Invited)[R]. AIAA 2015-2474, 2015.
    [31] Sarkar S. The pressure-dilatation correlation in compressible flows[J]. Physics of Fluids A, 1992, 4(12): 2674-2682. doi: 10.1063/1.858454
    [32] Wilcox D C. Dilatation-dissipation corrections for advanced turbulence models[J]. AIAA Journal, 1992, 30(11): 2639-2646. doi: 10.2514/3.11279
    [33] 马祎蕾, 余平, 姚世勇. 壁温对钝三角翼边界层稳定性及转捩影响[J]. 空气动力学学报, 2020, 38(6): 1017-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202006001.htm

    Ma Y L, Yu P, Yao S Y. Effect of wall temperature on stability and transition of hypersonic boundary layer on a blunt delta wing[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1017-1026(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202006001.htm
  • 加载中
图(12)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  25
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-13
  • 修回日期:  2024-01-02

目录

    /

    返回文章
    返回