主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碘离子推力器储罐性能影响因素数值研究

陈明石 王娴

陈明石, 王娴. 碘离子推力器储罐性能影响因素数值研究[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1097
引用本文: 陈明石, 王娴. 碘离子推力器储罐性能影响因素数值研究[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1097
CHEN Mingshi, WANG Xian. Numerical Study on Factors Affecting the Storage Tank Performance of an Iodine-ion Thruster[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1097
Citation: CHEN Mingshi, WANG Xian. Numerical Study on Factors Affecting the Storage Tank Performance of an Iodine-ion Thruster[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1097

碘离子推力器储罐性能影响因素数值研究

doi: 10.19527/j.cnki.2096-1642.1097
基金项目: 

空天飞行空气动力科学与技术全国重点实验室基金项目(SKLA-2022-KFKT-002)

详细信息
    作者简介:

    陈明石(1995-)男,硕士,主要研究方向为碘离子推力器中工质在储罐内传热传质数值研究。E-mail:chenmingshi@stu.xjtu.edu.cn

    通讯作者:

    王娴(1977-)女,博士,教授,主要研究方向为多相流、传热传质、计算流体力学、高性能计算。E-mail:wangxian@mail.xjtu.edu.cn

  • 中图分类号: V11

Numerical Study on Factors Affecting the Storage Tank Performance of an Iodine-ion Thruster

  • 摘要: 碘离子推力器主要应用于小型卫星的姿态控制和位置保持,其依靠碘工质的升华和电离产生推力。碘工质储供系统的加热方式和结构参数对其工作性能有很大影响。采用动网格方法对离子推力器储罐中碘工质升华相变过程进行数值模拟,讨论储罐加热方式和径高比对其性能的影响。结果表明:从质量流量、流量稳定性和预热时间3个参数综合考虑,四周伴热加热、辐射加热和接触加热3种方式中,接触加热性能最好。在接触加热方式下,储罐径高比对流量变化几乎无影响,流量稳定性很好。对于以大推力为设计目的的碘离子推力器,储罐径高比越小越好,径高比为0.2时的质量流量相比于径高比为1.4时增大了9.0%。对于以高响应速度为设计目的的碘离子推力器,储罐径高比越大越好,径高比为0.2时的预热时长相比于径高比为1.4时增大了80%。

     

  • [1] Manente M, Trezzolani F, Mantellato R, et al. REGULUS:know-how acquired on iodine propellant[C]. 36th International Electric Propulsion Conference. Vienna:University of Vienna, 2019:241-249.
    [2] 颜能文, 郭宁, 谷增杰. 碘工质空间电推进系统关键技术分析[J]. 真空与低温, 2018, 24(5):332-337. Yan N W, Guo N, Gu Z J. Key technical analysis of iodine space electric propulsion system[J]. Vacuum and Cryogenics, 2018, 24(5):332-337(in Chinese).
    [3] Szabo J, Robin M, Paintal S, et al. High density Hall thruster propellant investigations[R]. AIAA 2012-3853, 2012.
    [4] Szabo J, Robin M, Paintal S, et al. Iodine plasma propulsion test results at 1-10 kW[J]. IEEE Transactions on Plasma Science, 2015, 43(1):141-148.
    [5] Tsay M, Frongillo J, Model J, et al. Maturation of iodine fueled BIT-3 RF ion thruster and RF neutralizer[R]. AIAA 2016-4544, 2016.
    [6] Tsay M, Frongillo J, Hohman K, et al. LunarCube:A deep space 6U CubeSat with mission enabling ion propulsion technology[C]. 29th AIAA/USU Conference on Small Satellites, Logan, USA, 2015.
    [7] Tsay M, Model J, Barcroft C, et al. Integrated testing of iodine BIT-3 RF ion propulsion system for 6U CubeSat applications[C]. Proceedings of the 35th International Electric Propulsion Conference. Atlanta:Georgia Institute of Technology, 2017.
    [8] Saravia M M, Vinci A E, Moriconi B, et al. Absorption-based laser mass flow meter for iodine feeding system for electric propulsion[C]. 2020 IEEE 7th International Workshop on Metrology for AeroSpace(MetroAeroSpace). Pisa:IEEE, 2020:276-281.
    [9] Andreussi T, Giannetti V, Leporini A, et al. Influence of the magnetic field configuration on the plasma flow in Hall thrusters[J]. Plasma Physics and Controlled Fusion, 2018, 60(1):014015.
    [10] Andreussi T, Saravia M M, Andrenucci M. Plasma characterization in Hall thrusters by Langmuir probes[J]. Journal of Instrumentation, 2019, 14(5):C05011.
    [11] Giannetti V, Saravia M M, Leporini L, et al. Numerical and experimental investigation of longitudinal oscillations in hall thrusters[J]. Aerospace, 2021, 8(6):148.
    [12] Martínez Martínez J, Rafalskyi D. Design and development of iodine flow control systems for miniaturized propulsion systems[J]. CEAS Space Journal, 2022, 14(1):91-107.
    [13] Rafalskyi D, Martínez J M, Habl L, et al. In-orbit demonstration of an iodine electric propulsion system[J]. Nature, 2021, 599(7885):411-415.
    [14] Martínez J M, Rafalskyi D, Aanesland A. Development and testing of the NPT30-I2 iodine ion thruster[C]. 36th International Electric Propulsion Conference. Vienna:University of Vienna, 2019.
    [15] 周长斌, 刘佳, 徐宗琦, 等. 碘工质电推进储供系统设计及实验[J]. 上海航天, 2019, 36(6):97-103. Zhou C B, Liu J, Xu Z Q, et al. Design and experimental of iodine propellant feed system for electric propulsion[J]. Aerospace Shanghai, 2019, 36(6):97-103(in Chinese).
    [16] 周长斌. 碘工质电推进储供系统设计及实验研究[D]. 上海:上海交通大学, 2020. Zhou C B. Design and experimental study of iodine propellant feed system for electric propulsion[D]. Shanghai:Shanghai Jiao Tong University, 2020(in Chinese).
    [17] 李鑫. 应用于小卫星的碘工质电推力器储供系统设计及试验研究[D]. 哈尔滨:哈尔滨工业大学, 2020. Li X. Design and experimental study of iodine propellant electric thruster feed system for small satellites[D]. Harbin:Harbin Institute of Technology, 2020(in Chinese).
    [18] 李鑫, 黄昱璋, 刘辉, 等. 小卫星碘工质电推力器储供系统试验研究[C]. 2020年(第十六届)中国电推进学术研讨会. 北京, 2020. Li X, Huang Y Z, Liu H, et al. Experimental study on the storage and supply system of iodine working fluid electric thrusters for small satellites[C]. The 16th China Electric Power Promotion Academic Symposium in 2020. Beijing, 2020(in Chinese).
    [19] 叶展雯, 王平阳, 华志伟, 等. 碘工质电推进系统的储供设计及实验研究[J]. 推进技术, 2022, 43(9):451-458. Ye Z W, Wang P Y, Hua Z W, et al. Feeding design and experimental study of iodine electric propulsion system[J]. Journal of Propulsion Technology, 2022, 43(9):451-458(in Chinese).
    [20] 叶展雯, 王平阳, 余盛楠. 工质储供系统设计及微流量特性研究[C]. 2020年(第十六届)中国电推进学术研讨会. 北京, 2020. Ye Z W, Wang P Y, Yu S N. Design of working fluid storage and supply system and research on micro flow characteristics[C]. The 16th China Electric Power Promotion Academic Symposium in 2020. Beijing, 2020(in Chinese).
    [21] Polzin K A, Seixal J F, Mauro S L, et al. The iodine satellite(iSat) propellant feed system-design and development[C]. 35th International Electric Propulsion Conference. Atlanta:IEPC, 2017.
    [22] Szabo J, Robin M, Paintal S, et al. Iodine propellant space propulsion[C]. 33rd International Electric Propulsion Conference. Washington:The George Washington University, 2013.
    [23] Tsay M, Frongillo J, Hohman K. Iodine-fueled mini RF ion thruster for CubeSat applications[C]. 34th International Electric Propulsion Conference, Kobe:IEPC, 2015.
    [24] NIST. NIST Chemistry WebBook[EB/OL].[2023-11-17]. https://webbook.nist.gov/chemistry/.
    [25] MatWeb. Material Property Data[EB/OL].[2023-11-25]. https://www.matweb.com/.
    [26] Lopez-Quiroga E, Antelo L T, Alonso A A. Time-scale modeling and optimal control of freeze-drying[J]. Journal of Food Engineering, 2012, 111(4):655-666.
    [27] Ravnik J, Golobič I, Sitar A, et al. Lyophilization model of mannitol water solution in a laboratory scale lyophilizer[J]. Journal of Drug Delivery Science and Technology, 2018, 45:28-38.
    [28] Modest M F, Mazumder S. Radiative heat transfer[M]. 4th ed. Amsterdam:Elsevier, 2021:9-266.
    [29] Szabo J, Pote B, Paintal S, et al. Performance evaluation of an iodine-vapor hall thruster[J]. Journal of Propulsion and Power, 2012, 28(4):848-857.
    [30] Fox R W, McDonald A T. Introduction to fluid mechanics[M]. New York:Wiley, 1985:360.
  • 加载中
计量
  • 文章访问数:  29
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-01-02
  • 网络出版日期:  2024-03-16

目录

    /

    返回文章
    返回