[1] |
李秋彦, 李刚, 魏洋天, 等. 先进战斗机气动弹性设计综述[J]. 航空学报, 2020, 41(6):523430. Li Q Y, Li G, Wei Y T, et al. Review of aeroelasticity design for advanced fighter[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523430(in Chinese).
|
[2] |
左林玄, 王晋军. 全动翼尖对无尾飞翼布局飞机气动特性影响的实验研究[J]. 空气动力学学报, 2010, 28(2):132-137. Zuo L X, Wang J J. Experimental study of the effect of AMT on aerodynamic performance of tailless flying wing aircraft[J]. Acta Aerodynamica Sinica, 2010, 28(2) 132-137(in Chinese).
|
[3] |
于冲, 王旭, 陈鹏, 等. 三角翼无尾布局全动翼尖的操纵性能研究[J]. 航空学报, 2012, 33(11):1975-1983. Yu C, Wang X, Chen P, et al. Study of control characteristics for all moving wing tips in delta wing tailless configuration[J]. Acta Aeronautica et Astronautica Sinca, 2012, 33(11):1975-1983(in Chinese).
|
[4] |
Liu Z Y, Zhang B Q. Investigation on a flow coupling rudder for directional control of a low-aspect tailless configuration with diamond-shaped wing[J]. Aerospace, 2022, 9(2):79, doi:10. 3390/aerospace9020079.
|
[5] |
周铸, 余永刚, 刘刚, 等. 飞翼布局组合舵面航向控制特性 综合 研究[J]. 航空 学报, 2020, 41(6):523422. Zhou Z, Yu Y G, Liu G, et al. Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration[J]. Acta Aeronauticaet Astronautica Sinica, 2020, 41(6):523422(in Chinese).
|
[6] |
Bie D W, Gan W B, Ma T L, et al. Development of the AMT in yawing control of flying wing UAVs[C]. 2017 IEEE International Conference on Unmanned Systems (ICUS). Beijing, China:IEEE, 2017:404-406, doi:10. 1109/ICUS. 2017. 8278378.
|
[7] |
冯立好, 王晋军, 巴玉龙. 操纵面作动对无尾布局无人机纵向气动特性的影响[J]. 实验流体力学, 2012, 26(2):29-33. Feng L H, Wang J J, Ba Y L. Influence of control surfaces deflection on longitudinal aerodynamic characteristics of a tailless unmanned aerial vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2):29-33(in Chinese).
|
[8] |
Ni K, Hu P, Zhao H W, et al. Flutter and LCO of an all-movable horizontal tail with freeplay[R]. AIAA 2012-1979, 2012.
|
[9] |
史晓鸣, 梅睿, 苏轶龙, 等. 舵轴位置对全动舵面气动弹性稳定性影响[J]. 噪声与振动控制, 2016, 36(3):81-84. Shi X M, Mei R, Su Y L, et al. Influence of rudder shaft location on aeroelastic stability of an all-moving rudder[J]. Noise and Vibration Control, 2016, 36(3):81-84(in Chinese).
|
[10] |
黄程德, 郑冠男, 杨国伟, 等. 基于CFD/CSD耦合含间隙三维全动舵面气动弹性研究[J]. 应用力学学报, 2018, 35(1):1-7. Huang C D, Zheng G N, Yang G W, et al. Aeroelastic study of a three dimensional all-movable wing with free play using CFD/CSD coupling[J]. Chinese Journal of Applied Mechanics, 2018, 35(1):1-7(in Chinese).
|
[11] |
史晓鸣, 梅睿, 张晓宏, 等. 配重位置对全动舵面颤振抑制效果研究[J]. 应用力学学报, 2016, 33(2):268-272. Shi X M, Mei R, Zhang X H, et al. Effect of balance mass location on flutter of an all-moving rudder[J]. Chinese Journal of Applied Mechanics, 2016, 33(2):268-272(in Chinese).
|
[12] |
Bai Y G, Qian W, Chen X Y, et al. Experimental and numerical study of dynamic characteristic of a complex all-movable rudder system[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(3):654-664.
|
[13] |
季辰, 刘子强, 李锋. 钝前缘梯形翼高超声速风洞颤振试验[J]. 气体物理, 2018, 3(1):54-63. Ji C, Liu Z Q, Li F. Hypersonic wind tunnel flutter test for a blunt-leading-edge delta wing[J]. Physics of Gases, 2018, 3(1):54-63(in Chinese).
|
[14] |
Chen P C. Damping perturbation method for flutter solution:the g-method[J]. AIAA Journal, 2000, 38(9):1519-1524.
|
[15] |
Stark V J. General equations of motion for an elastic wing and method of solution[J]. AIAA Journal, 1984, 22(8):1146-1153.
|
[16] |
Vedeneev V V. New mechanism of the aeroelastic divergence onset[J]. AIAA Journal, 2020, 58(6):2716-2725.
|