主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤油燃料宽域冲压旋转爆震燃烧特性

舒晨 顾福涛 陈斌 晏成龙 仝毅恒 林伟

舒晨, 顾福涛, 陈斌, 晏成龙, 仝毅恒, 林伟. 煤油燃料宽域冲压旋转爆震燃烧特性[J]. 气体物理, 2024, 9(2): 21-32. doi: 10.19527/j.cnki.2096-1642.1082
引用本文: 舒晨, 顾福涛, 陈斌, 晏成龙, 仝毅恒, 林伟. 煤油燃料宽域冲压旋转爆震燃烧特性[J]. 气体物理, 2024, 9(2): 21-32. doi: 10.19527/j.cnki.2096-1642.1082
SHU Chen, GU Futao, CHEN Bin, YAN Chenglong, TONG Yiheng, LIN Wei. Rotating Detonation Combustion Characteristics of Kerosene-Fueled Wide-Area Scramjets[J]. PHYSICS OF GASES, 2024, 9(2): 21-32. doi: 10.19527/j.cnki.2096-1642.1082
Citation: SHU Chen, GU Futao, CHEN Bin, YAN Chenglong, TONG Yiheng, LIN Wei. Rotating Detonation Combustion Characteristics of Kerosene-Fueled Wide-Area Scramjets[J]. PHYSICS OF GASES, 2024, 9(2): 21-32. doi: 10.19527/j.cnki.2096-1642.1082

煤油燃料宽域冲压旋转爆震燃烧特性

doi: 10.19527/j.cnki.2096-1642.1082
详细信息
    作者简介:

    舒晨(1999—)男, 硕士, 主要研究方向为爆震推进。E-mail: shuchenhgd@163.com

    通讯作者:

    林伟(1987-)男, 博士, 副教授, 主要研究方向为空天推进技术。E-mail: linweiqy@163.com

  • 中图分类号: V231.1

Rotating Detonation Combustion Characteristics of Kerosene-Fueled Wide-Area Scramjets

  • 摘要: 通过三维数值仿真的方法, 研究了Ma=3~7飞行工况下, 煤油燃料冲压旋转爆震燃烧特性。在Ma=3飞行工况下, 由于燃料雾化蒸发效果较差, 无法实现煤油燃料的爆震燃烧。Ma=4, 5, 6的飞行工况下, 随着飞行Mach数的增大, 波头数目整体上逐渐增多, 分别为单波、三波、五波模态; 但传播速度逐渐减小; 冲压模态下, 液态燃料雾化蒸发效果较好, 但流场内均不同程度地残存有煤油蒸气, 其未参加反应便排出燃烧室。Ma=7的飞行工况下, 由于来流接近CJ速度, 流场将以驻定爆震模态组织燃烧。

     

  • 图  1  冲压旋转爆震环形燃烧室示意图

    Figure  1.  Annular combustion chamber for scramjet rotating detonation

    图  2  不同网格尺度下的流场压力云图

    Figure  2.  Pressure contour at different grid scales

    图  3  Ma=3, H=15 km飞行工况下煤油燃料冲压旋转爆震解耦云图

    Figure  3.  Decoupled contour for rotating detonation combustion of kerosene-fueled scramjet at Ma=3, H=15 km

    图  4  Ma=4, H=20 km飞行工况下三维环形燃烧室内流场云图

    Figure  4.  Contour of flow field in a three-dimensional annular combustion chamber at Ma=4, H=20 km

    图  5  X=105 mm,Y=0 mm,Z=-60 mm处监测点压力、温度随时间变化图

    Figure  5.  Pressure and temperature curves with time at the monitoring point at X=105 mm, Y=0 mm, Z=-60 mm

    图  6  R=105 mm流场环面展开云图

    Figure  6.  Annular contours at R=105 mm

    图  7  燃烧室内燃油粒径及爆震波头压力等值面

    Figure  7.  Fuel particle size and pressure iso-surface of detonation wave head in combustion chamber

    图  8  稳定传播阶段粒径分布统计

    Figure  8.  Particle size distribution statistics in stable propagation stage

    图  9  Ma=5, H=24 km飞行工况下流场云图

    Figure  9.  Contours of flow field in a three-dimensional annular combustion chamber at Ma=5, H=24 km

    图  10  X=105 mm, Y=0 mm, Z=120 mm监测点处的压力及温度随时间变化曲线

    Figure  10.  Pressure and temperature curves with time at the monitoring point at X=105 mm, Y=0 mm, Z=120 mm

    图  11  R=105 mm流场环面展开云图

    Figure  11.  Annular contours at R=105 mm

    图  12  环形燃烧室内燃油粒径及爆震波头等值面

    Figure  12.  Fuel particle size and pressure iso-surface of detonation wave head in annular combustion chamber

    图  13  粒径分布曲线

    Figure  13.  Particle size distribution curve

    图  14  Ma=6, H=28 km飞行工况下三维环形燃烧室内流场云图

    Figure  14.  Contour of flow field in a three-dimensional annular combustion chamber at Ma=6, H=28 km

    图  15  X=105 mm, Y=0 mm, Z=110 mm监测点处的压力及温度随时间变化曲线

    Figure  15.  Pressure and temperature curves with time at the monitoring point at X=105 mm, Y=0 mm, Z=110 mm

    图  16  环形燃烧室二维环面展开图

    Figure  16.  Two-dimensional annular expansion diagram of annular combustion chamber

    图  17  燃料粒径分布及爆震波头压力等值面

    Figure  17.  Fuel particle size and pressure iso-surface of detonation wave head in annular combustion chamber

    图  18  燃料液滴尺寸分布图

    Figure  18.  Fuel droplet size distribution

    图  19  Ma=7, H=30 km飞行工况时R=105 mm处环面

    Figure  19.  Annular flow fields at R=105 mm in flight condition of Ma=7, H=30 km

    图  20  燃烧室内燃料液滴分布及驻定爆震波头分布

    Figure  20.  Fuel droplet and stationary detonation wave head in combustion chamber

    表  1  化学反应方程式及参数

    Table  1.   Chemical reaction equations and parameters

    reaction equation A E/(J/(kg·mol))
    C12H23+17.75O2=12CO2+11.5H2O 2.58×109 1.25×108
    下载: 导出CSV

    表  2  Ma=3~7飞行工况下隔离段入口条件

    Table  2.   Entrance conditions of isolation section at Ma=3~7

    H/km Ma Pin/kPa Tin/K Main P0/kPa Ps/kPa Ts/K Pout/kPa
    15 3 442.51 606.69 1.5 252.23 68.71 418.41 12.05
    20 4 831.31 909.0 2 415.65 53.12 505.0 5.46
    24 5 1 550.62 1 323.1 2.5 697.78 40.84 588.04 2.93
    28 6 2 504.56 1 841.1 3 1 001.83 27.27 657.54 1.586
    30 7 4 847.74 2 426.2 3.5 1 696.709 22.25 703.25 1.17
    下载: 导出CSV
  • [1] Wolański P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 125-158. doi: 10.1016/j.proci.2012.10.005
    [2] 秦亚欣. 旋转爆震发动机研制新进展[J]. 航空动力, 2022(3): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDL202203003.htm

    Qin Y X. New development progress of rotating detonation engine[J]. Aerospace Power, 2022(3): 16-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDL202203003.htm
    [3] 师迎晨, 张任帅, 计自飞, 等. 高速飞行器的连续旋转爆震推进技术[J]. 空气动力学学报, 2022, 40(1): 101-113. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202201010.htm

    Shi Y C, Zhang R S, Ji Z F, et al. Rotating detonation propulsion technology for high-speed aircrafts[J]. Acta Aerodynamica Sinica, 2022, 40(1): 101-113(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202201010.htm
    [4] Zhdan S A, Rybnikov A I. Continuous detonation in a supersonic flow of a hydrogen-oxygen mixture[J]. Combustion, Explosion, and Shock Waves, 2014, 50(5): 556-567. doi: 10.1134/S0010508214050116
    [5] Smirnov N N, Nikitin V F, Stamov L I, et al. Three-dimensional modeling of rotating detonation in a ramjet engine[J]. Acta Astronautica, 2019, 163: 168-176.
    [6] Wu K, Zhang S J, Luan M Y, et al. Effects of flow-field structures on the stability of rotating detonation ramjet engine[J]. Acta Astronautica, 2020, 168: 174-181. doi: 10.1016/j.actaastro.2019.12.022
    [7] 王健平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展[J]. 实验流体力学, 2015, 29(4): 12-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201504002.htm

    Wang J P, Zhou R, Wu D. Progress of continuously rotating detonation engine research[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 12-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201504002.htm
    [8] Meng H L, Xiao Q, Feng W K, et al. Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor[J]. Aerospace Science and Technology, 2022, 122: 107407. doi: 10.1016/j.ast.2022.107407
    [9] Feng W K, Zheng Q, Xiao Q, et al. Effects of cavity length on operating characteristics of a ramjet rotating detonation engine fueled by liquid kerosene[J]. Fuel, 2023, 332: 126129. doi: 10.1016/j.fuel.2022.126129
    [10] 王超, 郑榆山, 蔡建华, 等. 碳氢燃料旋转爆震直连试验研究[J]. 实验流体力学, 2022, 36(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC202204001.htm

    Wang C, Zheng Y S, Cai J H, et al. Direct connected experimental research on hydrocarbon-fueled rotating detonation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 1-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC202204001.htm
    [11] Zhou J P, Song F L, Xu S D, et al. Investigation of rotating detonation fueled by liquid kerosene[J]. Energies, 2022, 15(12): 4483. doi: 10.3390/en15124483
    [12] 葛高杨, 马元, 侯世卓, 等. 当量比对汽油燃料两相旋转爆轰发动机工作特性影响实验研究[J]. 爆炸与冲击, 2021, 41(11): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202111003.htm

    Ge G Y, Ma Y, Hou S Z, et al. Experimental study on the effect of equivalent ratio on working characteristics of gasoline fuel two-phase rotating detonation engine[J]. Explosion and Shock Waves, 2021, 41(11): 21-32(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202111003.htm
    [13] Zheng Q, Meng H L, Weng C S, et al. Experimental research on the instability propagation characteristics of li-quid kerosene rotating detonation wave[J]. Defence Technology, 2020, 16(6): 1106-1115. doi: 10.1016/j.dt.2020.06.028
    [14] 葛高杨, 马元, 夏镇娟, 等. 高总温空气与汽油燃料的旋转爆震验证试验[J]. 推进技术, 2022, 43(6): 213-223. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202206020.htm

    Ge G Y, Ma Y, Xia Z J, et al. Verification experiment of rotating detonation fueled by gasoline with high total temperature air[J]. Journal of Propulsion Technology, 2022, 43(6): 213-223(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202206020.htm
    [15] Xue S N, Ying Z J, Ma H, et al. Experimental investigation on two-phase rotating detonation fueled by kerosene in a hollow directed combustor[J]. Frontiers in Energy Research, 2022, 10: 951177. doi: 10.3389/fenrg.2022.951177
    [16] Zhao M J, Zhang H W. Rotating detonative combustion in partially pre-vaporized dilute n-heptane sprays: droplet size and equivalence ratio effects[J]. Fuel, 2021, 304: 121481. doi: 10.1016/j.fuel.2021.121481
    [17] Zhao M J, Zhang H W. Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures[J]. Fuel, 2020, 275: 117986. doi: 10.1016/j.fuel.2020.117986
    [18] Huang X X, Lin Z Y. Analysis of coupled-waves structure and propagation characteristics in hydrogen-assisted kerosene-air two-phase rotating detonation wave[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4868-4884. doi: 10.1016/j.ijhydene.2021.11.105
    [19] Yan C L, Shu C, Zhao J F, et al. Influences of thermal physical property parameters on operating characteristics of simulated rotating detonation ramjet fueled by C12H23[J]. AIP Advances, 2022, 12(11): 115309. doi: 10.1063/5.0101939
    [20] Yan C L, Zhao J F, Tong Y H, et al. Formation and evolution of the numerical air-breathing rotating detonation fueled by C12H23[J]. Combustion Science and Technology, 2023, 20: 30-31.
    [21] 王超. 吸气式连续旋转爆震波自持传播机制研究[D]. 长沙: 国防科学技术大学, 2016.

    Wang C. Self-sustaining and propagation mechanism of airbreathing continuous rotating detonation wave[D]. Changsha: National University of Defense Technology, 2016(in Chinese).
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  34
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-24
  • 修回日期:  2023-12-04

目录

    /

    返回文章
    返回