主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Isight的二元进气道压缩楔射流控制参数优化

孙冯涛 史志伟 张伟麟 丁保政 舒彦淋

孙冯涛, 史志伟, 张伟麟, 丁保政, 舒彦淋. 基于Isight的二元进气道压缩楔射流控制参数优化[J]. 气体物理, 2024, 9(1): 21-35. doi: 10.19527/j.cnki.2096-1642.1080
引用本文: 孙冯涛, 史志伟, 张伟麟, 丁保政, 舒彦淋. 基于Isight的二元进气道压缩楔射流控制参数优化[J]. 气体物理, 2024, 9(1): 21-35. doi: 10.19527/j.cnki.2096-1642.1080
SUN Fengtao, SHI Zhiwei, ZHANG Weilin, DING Baozheng, SHU Yanlin. Parameter Optimization of Jet Control for Compression Ramps of Two-DimensionalInlet Based on Isight[J]. PHYSICS OF GASES, 2024, 9(1): 21-35. doi: 10.19527/j.cnki.2096-1642.1080
Citation: SUN Fengtao, SHI Zhiwei, ZHANG Weilin, DING Baozheng, SHU Yanlin. Parameter Optimization of Jet Control for Compression Ramps of Two-DimensionalInlet Based on Isight[J]. PHYSICS OF GASES, 2024, 9(1): 21-35. doi: 10.19527/j.cnki.2096-1642.1080

基于Isight的二元进气道压缩楔射流控制参数优化

doi: 10.19527/j.cnki.2096-1642.1080
详细信息
    作者简介:

    孙冯涛(1998—) 男,硕士,主要研究进气道流动控制与参数优化。E-mail: 578739321@qq.com

  • 中图分类号: V211.7

Parameter Optimization of Jet Control for Compression Ramps of Two-DimensionalInlet Based on Isight

  • 摘要: 二元进气道常用于宽速域吸气式飞行器。宽速域飞行器的飞行速域较大, 进气道要兼顾高低速条件下的飞行要求, 这存在一定的困难。利用射流进行前体激波控制, 在一定程度上可以改善流场, 并提升进气道性能, 但现有的射流激励方案仅是将激波推至唇口, 不一定使得进气道达到最优性能或造成射流流量过多损失, 因此射流控制参数的优化是一个重要问题。基于Isight软件搭建优化流程, 采用Hooke-Jeeves优化方法, 以射流角度、射流宽度以及射流位置作为优化变量, 流量系数作为约束条件, 总压恢复系数最大作为目标函数进行优化, 探究了来流Mach数为6时不同射流参数对进气道性能的影响。结果表明, Hooke-Jeeves优化方法可以应用于进气道前体射流控制参数优化问题, 优化后的进气道能够满足流量系数的要求, 射流角度优化后的总压恢复系数相对于无射流方案提升18%, 综合优化后的总压恢复系数相对于仅优化射流角度提升2.82%。

     

  • 图  1  进气道模型

    Figure  1.  Inlet model

    图  2  唇口附近局部网格

    Figure  2.  Local grid near the lip

    图  3  数值仿真密度梯度图和实验纹影图

    Figure  3.  Contour of density gradient magnitude and experimental schlieren

    图  4  数值仿真和实验内通道下壁面压力系数分布

    Figure  4.  Comparison of lower-wall pressure coefficient between simulation and experiment

    图  5  射流激励器参数

    Figure  5.  Parameters of jet exciter

    图  6  Isight优化流程

    Figure  6.  Optimization process of Isight

    图  7  优化过程中网格划分及数值计算结果

    Figure  7.  Grid and simulation results in the process of optimization

    图  8  目标函数及各优化变量收敛过程

    Figure  8.  Convergence process of objective function and optimization variables

    图  9  优化过程中点集分布

    Figure  9.  Distribution of point sets during the process of optimization

    图  10  总压恢复系数和射流角度及射流压比拟合云图

    Figure  10.  Fitting contour of total pressure recovery coefficient with jet angle and pressure ratio

    图  11  射流角度优化过程中不同样本点流场

    Figure  11.  Flow fields of different examples when optimizing jet angle

    图  12  射流位置优化时各优化变量收敛过程

    Figure  12.  Convergence process of optimization variables when optimizing jet position

    图  13  总压恢复系数随射流位置和射流压比变化拟合云图

    Figure  13.  Fitting contour of total pressure recovery coefficient with jet position and pressure ratio

    图  14  射流位置优化过程中不同样本点流场

    Figure  14.  Flow fields of different examples when optimizing jet position

    图  15  综合优化各优化变量收敛过程

    Figure  15.  Convergence process of objective function and optimization variables of combination optimization

    图  16  总压恢复系数和优化变量拟合云图

    Figure  16.  Fitting contour of total pressure recovery coefficient with optimization variables

    图  17  综合优化过程中不同样本点流场对比

    Figure  17.  Flow fields of different examples in the process of combination optimization

    图  18  不同射流参数下进气道流场

    Figure  18.  Flow fields of inlet at different jet parameters

    图  19  内通道截面示意图

    Figure  19.  Sketch of inner channel cross-section

    图  20  内通道中各截面参数

    Figure  20.  Parameters of each section in the inner channel

    图  21  角度优化和综合优化流场Mach数云图

    Figure  21.  Contour of Mach number of angle optimization and combination optimization

    图  22  角度优化和综合优化流场总压恢复系数分布

    Figure  22.  Contour of total pressure recovery coefficient of angle optimization and combination optimization

    图  23  角度优化和综合优化流场密度梯度云图

    Figure  23.  Contour of density gradient of angle optimization and combination optimization

    图  24  角度优化和综合优化流场压力梯度云图

    Figure  24.  Contour of pressure gradient of angle optimization and combination optimization

    表  1  进气道主要设计参数

    Table  1.   Main design parameters of inlet

    parameter value
    l1/mm 160
    l2/mm 200
    α1/(°) 7
    α2/(°) 13
    h/mm 136
    h1/mm 76
    下载: 导出CSV

    表  2  射流角度优化变量取值范围

    Table  2.   Value range of optimization variables when optimizing jet angle

    variable valuemin valueinitial valuemax
    θ1/(°) 30 90 150
    θ2/(°) 30 90 150
    Pr1 2 2.85 6
    Pr2 2 3.15 6
    下载: 导出CSV

    表  3  射流角度和压比最优值

    Table  3.   Optimal values of jet angle and pressure ratio

    θ1/(°) θ2/(°) Pr1 Pr2
    150 82.5 4 4
    下载: 导出CSV

    表  4  优化前后进气道性能对比

    Table  4.   Comparison of inlet performance before and after optimization

    method total pressure recovery coefficient flow cofficient Mach number of outlet
    without jet 0.420 1.00 3.9
    optimal jet angle 0.496 1.01 3.89
    relative variation/(%) 18 1 0.25
    下载: 导出CSV

    表  5  射流位置优化变量取值范围

    Table  5.   Value range of optimization variables when optimizing jet position

    variable valuemin valueinitial valuemax
    D1/mm 5 5 80
    D2/mm 5 5 80
    Pr1 2 2.85 6
    Pr2 2 3.15 6
    下载: 导出CSV

    表  6  射流位置和压比最优值

    Table  6.   Optimal values of jet position and pressure ratio

    D1/mm D2/mm Pr1 Pr2
    6.8 15.3 2.85 4.15
    下载: 导出CSV

    表  7  综合优化变量取值范围

    Table  7.   Variable value range of combination optimization

    variable valuemin valueinitial valuemax
    θ1/(°) 30 90 150
    θ2/(°) 30 90 150
    W1/mm 5 10 20
    W2/mm 5 10 20
    Pr1 2 2.85 6
    Pr2 2 3.15 6
    下载: 导出CSV

    表  8  综合优化变量最优值

    Table  8.   Optimal values of variables of combination optimization

    θ1/(°) θ2/(°) W1/mm W2/mm Pr1 Pr2
    60 91.875 18.47 19.88 2.85 3.21
    下载: 导出CSV

    表  9  综合优化后进气道性能

    Table  9.   Inlet performance after combination optimization

    optimization total pressure recovery coefficient flow cofficient Mach number of outlet
    optimal angle 0.496 1.01 3.89
    combination optimization 0.51 1.02 3.90
    relative variation/(%) 2.82 1 0.2
    下载: 导出CSV
  • [1] 孟宇鹏, 杨晖, 满延进. 高超声速进气道飞行器一体化设计技术的发展[J]. 气体物理, 2021, 6(4): 66-83. doi: 10.19527/j.cnki.2096-1642.0861

    Meng Y P, Yang H, Man Y J. Development of hypersonic inlet-vehicle integrative design technology[J]. Physics of Gases, 2021, 6(4): 66-83(in Chinese). doi: 10.19527/j.cnki.2096-1642.0861
    [2] 金志光, 张堃元, 陈卫明, 等. 高超声速二元变几何进气道气动方案设计与调节规律研究[J]. 航空学报, 2013, 34(4): 779-786.

    Jin Z G, Zhang K Y, Chen W M, et al. Design and regulation of two-dimensional variable geometry hypersonic inlets[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 779-786(in Chinese).
    [3] 戎佳欣. 自适应鼓包进气道结构的柔性蒙皮技术研究[D]. 南京: 南京航空航天大学, 2018.

    Rong J X. Research on flexible skin techniques for adaptive bump inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [4] 谭慧俊, 王子运, 张悦. 形状记忆合金在飞行器进气道中的应用研究进展[J]. 南京航空航天大学学报, 2019, 51(4): 438-448.

    Tan H J, Wang Z Y, Zhang Y. Review of applications of shape memory alloy in inlets[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(4): 438-448(in Chinese).
    [5] Haws R G, Noall J S, Daines R L. Computational investigation of a method to compress air fluidically in supersonic inlets[J]. Journal of Spacecraft and Rockets, 2001, 38(1): 51-59. doi: 10.2514/2.3654
    [6] 邵纯, 曹燕飞, 邹龙, 等. 零质量射流及其在进气道流动控制中的应用研究[J]. 工程力学, 2015, 32(4): 206-211.

    Shao C, Cao Y F, Zou L, et al. Active flow control applications with zero net mass flux actuator in flow field of supersonic inlet[J]. Engineering Mechanics, 2015, 32(4): 206-211(in Chinese).
    [7] 方传波. 基于主动射流的超声速进气道起动特性数值模拟研究[D]. 长沙: 国防科学技术大学, 2009.

    Fang C B. Numerical simulation of starting characteristics of supersonic inlet based on active injection[D]. Changsha: National University of Defense Technology, 2009(in Chinese).
    [8] Tan H J, Chen Z, Li G S. A new concept and preliminary study of variable hypersonic inlet with fixed geometry based on shockwave control[J]. Science in China Series E: Technological Sciences, 2007, 50(5): 644-657. doi: 10.1007/s11431-007-0072-7
    [9] 靳守林. 流动控制在超声速进气道前体激波控制上的应用[D]. 南京: 南京航空航天大学, 2020.

    Jin S L. Application of flow control on supersonic inlet shock[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
    [10] 董明, 赵慧勇. 超声速边界层中壁面抽吸对流动分离的抑制作用[J]. 气体物理, 2019, 4(2): 17-29. doi: 10.19527/j.cnki.2096-1642.0742

    Dong M, Zhao H Y. Suppression of flow separation by wall suction in supersonic boundary layers[J]. Physics of Gases, 2019, 4(2): 17-29(in Chinese). doi: 10.19527/j.cnki.2096-1642.0742
    [11] 肖毅, 沈亮, 刘敏, 等. 基于边界层抽吸的埋入式进气道性能优化研究[J]. 航空科学技术, 2022, 33(7): 23-28.

    Xiao Y, Shen L, Liu M, et al. Research on perfoemance optimization of submerged inlet based on boundary layer suction[J]. Aeronautical Science & Technology, 2022, 33(7): 23-28(in Chinese).
    [12] 张宝虎. 超声速边界层抽吸流场建模及应用研究[D]. 长沙: 国防科技大学, 2020.

    Zhang B H. Supersonic boundary layer bleed flow field modelling and its application[D]. Changsha: National University of Defense Technology, 2020(in Chinese).
    [13] 李益文, 王宇天, 庞垒, 等. 进气道等离子体/磁流体流动控制研究进展[J]. 力学学报, 2019, 51(2): 311-321.

    Li Y W, Wang Y T, Pang L, et al. Research progress of plasma/MHD flow control in inlet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 311-321(in Chinese).
    [14] 沈双晏, 金星. 磁流体动力学磁控进气道流场分布数值模拟[J]. 强激光与粒子束, 2015, 27(12): 124008. doi: 10.11884/HPLPB201527.124008

    Shen S Y, Jin X. Numerical simulation of MHD magnetic control inlet flow field distribution[J]. High Power Laser and Particle Beams, 2015, 27(12): 124008(in Chinese). doi: 10.11884/HPLPB201527.124008
    [15] 孙晓晖, 陈志华, 薛大文. 高超声速进气道流场的磁流体控制[J]. 南京理工大学学报, 2013, 37(6): 891-895. doi: 10.3969/j.issn.1005-9830.2013.06.019

    Sun X H, Chen Z H, Xue D W. Magnetohydrodynamic control of hypersonic inlet flow[J]. Journal of Nanjing University of Science and Technology, 2013, 37(6): 891-895(in Chinese). doi: 10.3969/j.issn.1005-9830.2013.06.019
    [16] 李斌斌. 合成射流及在主动流动控制中的应用[D]. 南京: 南京航空航天大学, 2012.

    Li B B. Synthetic Jet and its application in active flow control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [17] 王俊伟, 夏智勋, 罗振兵, 等. 合成射流对高超声速进气道起动特性影响数值模拟研究[J]. 空气动力学学报, 2018, 36(4): 613-619.

    Wang J W, Xia Z X, Luo Z B, et al. Numerical study on starting characteristics of hypersonic inlet with synthetic jet[J]. Acta Aerodynamica Sinica, 2018, 36(4): 613-619(in Chinese).
    [18] 何鹏, 董金钟. 合成射流方向布局对S形进气道分离控制的效应[J]. 航空动力学报, 2015, 30(2): 306-314.

    He P, Dong J Z. Effect of slot orientation on synthetic jet-based separation control in a serpentine inlet[J]. Journal of Aerospace Power, 2015, 30(2): 306-314(in Chinese).
    [19] Zhang W L, Shi Z W, Zhang C H, et al. A study on flow control in a hypersonic inlet using a plasma synthetic jet actuator[J]. Physics of Fluids, 2022, 34(10): 106109. doi: 10.1063/5.0114073
    [20] 王宇天, 张百灵, 李益文, 等. 等离子体激励控制激波与边界层干扰流动分离数值研究[J]. 航空动力学报, 2018, 33(2): 364-371.

    Wang Y T, Zhang B L, Li Y W, et al. Numerical investigation of control of shock wave and boundary layer interactions flow separation with plasma actuation[J]. Journal of Aerospace Power, 2018, 33(2): 364-371(in Chinese).
    [21] 周岩. 新型等离子体合成射流及其激波控制特性研究[D]. 长沙: 国防科技大学, 2018.

    Zhou Y. Novel plasma synthetic jet and its application in shock wave control[D]. Changsha: National University of Defense Technology, 2018(in Chinese).
    [22] Damm K A, Gollan R J, Jacobs P A, et al. Discrete adjoint optimization of a hypersonic inlet[J]. AIAA Journal, 2020, 58(6): 2621-2634. http://www.xueshufan.com/publication/3021283594
    [23] Kline H L, Palacios F, Economon T D, et al. Adjoint-based optimization of a hypersonic inlet[R]. AIAA 2015-3060, 2015.
    [24] Kline H L, Economon T D, Alonso J J. Multi-objective optimization of a hypersonic inlet using generalized outflow boundary conditions in the continuous adjoint method[R]. AIAA 2016-0912, 2016.
    [25] Kline H L, Alonso J J. Adjoint of generalized outflow-based functionals applied to hypersonic inlet design[J]. AIAA Journal, 2017, 55(11): 3903-3915.
    [26] Shukla V, Gelsey A, Schwabacher M, et al. Automated design optimization for the P2 and P8 hypersonic inlets[J]. Journal of Aircraft, 1997, 34(2): 228-235. doi: 10.2514/2.2161
    [27] Brown M, Mudford N, Neely A, et al. Robust design optimization of two-dimensional scramjet inlets[R]. AIAA 2006-8140, 2006.
    [28] 孙菲, 任鑫. 高超声速二维进气道多目标优化[J]. 战术导弹技术, 2014(5): 76-81.

    Sun F, Ren X. Multi-objective optimization design of two-dimensional hypersonic inlet[J]. Tactical Missile Technology, 2014(5): 76-81(in Chinese).
    [29] 范晓樯, 李桦, 李晓宇, 等. 高超声速二维进气道参数化设计方法初探[J]. 航空动力学报, 2007, 22(1): 66-72.

    Fan X Q, Li H, Li X Y, et al. Preliminary investigation onparametric design method of the two-dimensional hypersonic inlet[J]. Journal of Aerospace Power, 2007, 22(1): 66-72(in Chinese).
    [30] Wu X Y, Luo S B, Chen X Q, et al. Global design optimization for hypersonic scramjet propulsive flowpath[R]. AIAA 2006-1911, 2006.
    [31] 吴先宇, 刘睿, 罗世彬, 等. 基于替代模型的高超声速前体/进气道一体化优化[J]. 航空动力学报, 2008, 23(5): 796-802.

    Wu X Y, Liu R, Luo S B, et al. An integrated optimization of hypersonic forebody/inlet based on surrogate models[J]. Journal of Aerospace Power, 2008, 23(5): 796-802(in Chinese).
    [32] 赖宇阳, 姜欣, 方立桥, 等. Isight参数优化理论与实例详解[M]. 北京: 北京航空航天大学出版社, 2012.

    Lai Y Y, Jiang X, Fang L Q, et al. Isight parameter optimization theory and example explanation[M]. Beijing: Beihang University Press, 2012(in Chinese).
  • 加载中
图(24) / 表(9)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  16
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-10-11

目录

    /

    返回文章
    返回