主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Isight的二元进气道压缩楔射流控制参数优化

孙冯涛 史志伟 张伟麟 丁保政 舒彦淋

孙冯涛, 史志伟, 张伟麟, 丁保政, 舒彦淋. 基于Isight的二元进气道压缩楔射流控制参数优化[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1080
引用本文: 孙冯涛, 史志伟, 张伟麟, 丁保政, 舒彦淋. 基于Isight的二元进气道压缩楔射流控制参数优化[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1080
SUN Feng-tao, SHI Zhi-wei, ZHANG Wei-lin, DING Bao-zheng, SHU Yan-lin. Parameter Optimization of Jet Control for Compression Ramps of Two-Dimensional Inlet Based on Isight[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1080
Citation: SUN Feng-tao, SHI Zhi-wei, ZHANG Wei-lin, DING Bao-zheng, SHU Yan-lin. Parameter Optimization of Jet Control for Compression Ramps of Two-Dimensional Inlet Based on Isight[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1080

基于Isight的二元进气道压缩楔射流控制参数优化

doi: 10.19527/j.cnki.2096-1642.1080
详细信息
    作者简介:

    孙冯涛(1998-) 男,硕士,主要研究进气道流动控制与参数优化。E-mail:578739321@qq.com

  • 中图分类号: V211.7

Parameter Optimization of Jet Control for Compression Ramps of Two-Dimensional Inlet Based on Isight

  • 摘要:

    二元进气道常用于宽速域吸气式飞行器,宽速域飞行器的飞行速域较大,进气道要兼顾高低速条件下的飞行要求,这存在一定的困难。利用射流进行前体激波控制,在一定程度上可以改善流场,并提升进气道性能,但现有的射流激励方案仅是将激波推至唇口,不一定使得进气道达到最优性能或造成射流流量过多损失,因此射流控制参数的优化是一个重要问题。基于Isight软件搭建优化流程,采用Hooke-Jeeves优化方法,以射流角度、射流宽度以及射流位置作为优化变量,流量系数作为约束条件,总压恢复系数最大作为目标函数进行优化,探究了来流Mach数为6时不同射流参数对进气道性能的影响。结果表明,Hooke-Jeeves优化方法可以应用于进气道前体射流控制参数优化问题,优化后的进气道能够满足流量系数的要求,射流角度优化后的总压恢复系数相对于无射流方案提升18%,综合优化后的总压恢复系数相对于仅优化射流角度提升2.82%。

     

  • [1] 孟宇鹏,杨晖,满延进.高超声速进气道飞行器一体化设计技术的发展[J].气体物理,2021,6(4):66-83.Meng Y P,Yang H,Man Y J.Development of hypersonic inlet-vehicle integrative design technology[J].Physics of Gases,2021,6(4):66-83(in Chinese).
    [2] 金志光,张堃元,陈卫明,等.高超声速二元变几何进气道气动方案设计与调节规律研究[J].航空学报,2013,34(4):779-786.Jin Z G,Zhang K Y,Chen W M,et al.Design and regulation of two-dimensional variable geometry hypersonic inlets[J].Acta Aeronautica et Astronautica Sinica,2013,34(4):779-786(in Chinese).
    [3] 戎佳欣.自适应鼓包进气道结构的柔性蒙皮技术研究[D].南京:南京航空航天大学,2018.Rong J X.Research on flexible skin techniques for adaptive bump inlet[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2018(in Chinese).
    [4] 谭慧俊,王子运,张悦.形状记忆合金在飞行器进气道中的应用研究进展[J].南京航空航天大学学报,2019,51(4):438-448.Tan H J,Wang Z Y,Zhang Y.Review of applications of shape memory alloy in inlets[J].Journal of Nanjing University of Aeronautics and Astronautics,2019,51(4):438-448(in Chinese).
    [5] Haws R G,Noall J S,Daines R L.Computational investigation of a method to compress air fluidically in supersonic inlets[J].Journal of Spacecraft and Rockets,2001,38(1):51-59.
    [6] 邵纯,曹燕飞,邹龙,等.零质量射流及其在进气道流动控制中的应用研究[J].工程力学,2015,32(4):206-211.Shao C,Cao Y F,Zou L,et al.Active flow control applications with zero net mass flux actuator in flow field of supersonic inlet[J].Engineering Mechanics,2015,32(4):206-211(in Chinese).
    [7] 方传波.基于主动射流的超声速进气道起动特性数值模拟研究[D].长沙:国防科学技术大学,2009.Fang C B.Numerical simulation of starting characteristics of supersonic inlet based on active injection[D].Changsha:National University of Defense Technology,2009(in Chinese).
    [8] Tan H J,Chen Z,Li G S.A new concept and preliminary study of variable hypersonic inlet with fixed geometry based on shockwave control[J].Science in China Series E:Technological Sciences,2007,50(5):644-657.
    [9] 靳守林.流动控制在超声速进气道前体激波控制上的应用[D].南京:南京航空航天大学,2020.Jin S L.Application of flow control on supersonic inlet shock[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2020(in Chinese).
    [10] 董明,赵慧勇.超声速边界层中壁面抽吸对流动分离的抑制作用[J].气体物理,2019,4(2):17-29.Dong M,Zhao H Y.Suppression of flow separation by wall suction in supersonic boundary layers[J].Physics of Gases,2019,4(2):17-29(in Chinese).
    [11] 肖毅,沈亮,刘敏,等.基于边界层抽吸的埋入式进气道性能优化研究[J].航空科学技术,2022,33(7):23-28.Xiao Y,Shen L,Liu M,et al.Research on perfoemance optimization of submerged inlet based on boundary layer suction[J].Aeronautical Science&Technology,2022,33(7):23-28(in Chinese).
    [12] 张宝虎.超声速边界层抽吸流场建模及应用研究[D].长沙:国防科技大学,2020.Zhang B H.Supersonic boundary layer bleed flow field modelling and its application[D].Changsha:National University of Defense Technology,2020(in Chinese).
    [13] 李益文,王宇天,庞垒,等.进气道等离子体/磁流体流动控制研究进展[J].力学学报,2019,51(2):311-321.Li Y W,Wang Y T,Pang L,et al.Research progress of plasma/MHD flow control in inlet[J].Chinese Journal of Theoretical and Applied Mechanics,2019,51(2):311321(in Chinese).
    [14] 沈双晏,金星.磁流体动力学磁控进气道流场分布数值模拟[J].强激光与粒子束,2015,27(12):124008.Shen S Y,Jin X.Numerical simulation of MHD magnetic control inlet flow field distribution[J].High Power Laser and Particle Beams,2015,27(12):124008(in Chinese).
    [15] 孙晓晖,陈志华,薛大文.高超声速进气道流场的磁流体控制[J].南京理工大学学报,2013,37(6):891895.Sun X H,Chen Z H,Xue D W.Magnetohydrodynamic control of hypersonic inlet flow[J].Journal of Nanjing University of Science and Technology,2013,37(6):891895(in Chinese).
    [16] 李斌斌.合成射流及在主动流动控制中的应用[D].南京:南京航空航天大学,2012.Li B B.Synthetic Jet and its application in active flow control[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012(in Chinese).
    [17] 王俊伟,夏智勋,罗振兵,等.合成射流对高超声速进气道起动特性影响数值模拟研究[J].空气动力学学报,2018,36(4):613-619.Wang J W,Xia Z X,Luo Z B,et al.Numerical study on starting characteristics of hypersonic inlet with synthetic jet[J].Acta Aerodynamica Sinica,2018,36(4):613619(in Chinese).
    [18] 何鹏,董金钟.合成射流方向布局对S形进气道分离控制的效应[J].航空动力学报,2015,30(2):306314.He P,Dong J Z.Effect of slot orientation on synthetic jet-based separation control in a serpentine inlet[J].Journal of Aerospace Power,2015,30(2):306-314(in Chinese).
    [19] Zhang W L,Shi Z W,Zhang C H,et al.A study on flow control in a hypersonic inlet using a plasma synthetic jet actuator[J].Physics of Fluids,2022,34(10):106109.
    [20] 王宇天,张百灵,李益文,等.等离子体激励控制激波与边界层干扰流动分离数值研究[J].航空动力学报,2018,33(2):364-371.Wang Y T,Zhang B L,Li Y W,et al.Numerical investigation of control of shock wave and boundary layer interactions flow separation with plasma actuation[J].Journal of Aerospace Power,2018,33(2):364-371(in Chinese).
    [21] 周岩.新型等离子体合成射流及其激波控制特性研究[D].长沙:国防科技大学,2018.Zhou Y.Novel plasma synthetic jet and its application in shock wave control[D].Changsha:National University of Defense Technology,2018(in Chinese).
    [22] Damm K A,Gollan R J,Jacobs P A,et al.Discrete adjoint optimization of a hypersonic inlet[J].AIAA Journal,2020,58(6):2621-2634.
    [23] Kline H L,Palacios F,Economon T D,et al.Adjointbased optimization of a hypersonic inlet[R].AIAA 20153060,2015.
    [24] Kline H L,Economon T D,Alonso J J.Multi-objective optimization of a hypersonic inlet using generalized outflow boundary conditions in the continuous adjoint method[R].AIAA 2016-0912,2016.
    [25] Kline H L,Alonso J J.Adjoint of generalized outflowbased functionals applied to hypersonic inlet design[J].AIAA Journal,2017,55(11):3903-3915.
    [26] Shukla V,Gelsey A,Schwabacher M,et al.Automated design optimization for the P2 and P8 hypersonic inlets[J].Journal of Aircraft,1997,34(2):228-235.
    [27] Brown M,Mudford N,Neely A,et al.Robust design optimization of two-dimensional scramjet inlets[R].AIAA 2006-8140,2006.
    [28] 孙菲,任鑫.高超声速二维进气道多目标优化[J].战术导弹技术,2014(5):76-81.Sun F,Ren X.Multi-objective optimization design of twodimensional hypersonic inlet[J].Tactical Missile Technology,2014(5):76-81(in Chinese).
    [29] 范晓樯,李桦,李晓宇,等.高超声速二维进气道参数化设计方法初探[J].航空动力学报,2007,22(1):66-72.Fan X Q,Li H,Li X Y,et al.Preliminary investigation onparametric design method of the two-dimensional hypersonic inlet[J].Journal of Aerospace Power,2007,22(1):66-72(in Chinese).
    [30] Wu X Y,Luo S B,Chen X Q,et al.Global design optimization for hypersonic scramjet propulsive flowpath[R].AIAA 2006-1911,2006.
    [31] 吴先宇,刘睿,罗世彬,等.基于替代模型的高超声速前体/进气道一体化优化[J].航空动力学报,2008,23(5):796-802.Wu X Y,Liu R,Luo S B,et al.An integrated optimization of hypersonic forebody/inlet based on surrogate models[J].Journal of Aerospace Power,2008,23(5):796-802(in Chinese).
    [32] 赖宇阳,姜欣,方立桥,等.Isight参数优化理论与实例详解[M].北京:北京航空航天大学出版社,2012.Lai Y Y,Jiang X,Fang L Q,et al.Isight parameter optimization theory and example explanation[M].Beijing:Beihang University Press,2012(in Chinese).
  • 加载中
计量
  • 文章访问数:  40
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-10-11

目录

    /

    返回文章
    返回