主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀结构网格上MUSCL和WENO格式的精度

刘君 刘瑜

刘君, 刘瑜. 非均匀结构网格上MUSCL和WENO格式的精度[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1079
引用本文: 刘君, 刘瑜. 非均匀结构网格上MUSCL和WENO格式的精度[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1079
LIU Jun, LIU Yu. Accuracy of MUSCL and WENO Schemes On Non-Uniform Structured Meshes[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1079
Citation: LIU Jun, LIU Yu. Accuracy of MUSCL and WENO Schemes On Non-Uniform Structured Meshes[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1079

非均匀结构网格上MUSCL和WENO格式的精度

doi: 10.19527/j.cnki.2096-1642.1079
基金项目: 

宁波市科技创新2025重大项目(2022Z186)

详细信息
    作者简介:

    刘君(1965-)男,教授,主要研究方向为计算流体力学。E-mail:liujun1@nbu.edu.cn

  • 中图分类号: O35

Accuracy of MUSCL and WENO Schemes On Non-Uniform Structured Meshes

  • 摘要: 基于一维均匀网格条件下构造的差分格式,在实际应用中须推广到非均匀或者曲线网格上,坐标变换过程引入几何诱导误差。目前常用收敛解误差随着网格细化变化的精度测试方法评估差分格式的精度。在二维柱坐标均匀网格上,采用1阶迎风、2阶MUSCL和5阶WENO计算流场参数为常数的自由流问题,按照精度测试方法比较收敛曲线斜率,发现1阶迎风的网格收敛精度是2阶的,5阶WENO的网格收敛精度不到1阶。理论分析表明,这种精度测试方法与差分格式精度定义不等价,而且所采用的数据无法反映差分格式的固有缺陷,因此,不能用来作为差分格式精度评价指标。很多研究WENO的文献经常模拟双Mach反射问题、二维Riemann问题等经典算例,把接触间断是否演变成不稳定涡结构作为特征,理论上可以证明涡结构是非物理现象,因此用是否出现涡结构作为算法高精度的论据并不合适。

     

  • [1] 刘君, 邹东阳, 董海波. 基于非结构变形网格的间断装配法原理[J]. 气体物理, 2017, 2(1):13-20. Liu J, Zou D Y, Dong H B. Principle of new discontinuity fitting technique based on unstructured moving grid[J]. Physics of Gases, 2017, 2(1):13-20(in Chinese).
    [2] 刘君, 邹东阳, 徐春光. 基于非结构动网格的非定常激波装配法[J]. 空气动力学学报, 2015, 33(1):10-16. Liu J, Zou D Y, Xu C G. An unsteady shock-fitting tech- nique based on unstructured moving grids[J]. Acta Aero- dynamica Sinica, 2015, 33(1):10-16(in Chinese).
    [3] 刘君, 邹东阳, 董海波. 动态间断装配法模拟斜激波壁面反射[J]. 航空学报, 2016, 37(3):836-846. Liu J, Zou D Y, Dong H B. A moving discontinuity fitting technique to simulate shock waves impinged on a straight wall[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):836-846(in Chinese).
    [4] 刘君, 韩芳. 有关有限差分高精度格式两个应用问题的讨论[J]. 空气动力学学报, 2020, 38(2):244-253. Liu J, Han F. Discussions on two problems in applications of high-order finite difference schemes[J]. Acta Aerody- namica Sinica, 2020, 38(2):244-253(in Chinese).
    [5] Chang S Y, Bai X, Zou D Y, et al. An adaptive disconti- nuity fitting technique on unstructured dynamic grids[J]. Shock Waves, 2019, 29(8):1103-1115.
    [6] 刘君, 韩芳. 有限差分法中的贴体坐标变换[J]. 气体物理, 2018, 3(5):18-29. Liu J, Han F. Body-fitted coordinate transformation for fi- nite difference method[J]. Physics of Gases, 2018, 3(5):18-29(in Chinese).
    [7] 刘君, 韩芳, 夏冰. 有限差分法中几何守恒律的机理及算法[J]. 空气动力学学报, 2018, 36(6):917-926. Liu J, Han F, Xia B. Mechanism and algorithm for geo- metric conservation law in finite difference method[J]. Acta Aerodynamica Sinica, 2018, 36(6):917-926(in Chinese).
    [8] 刘君, 魏雁昕, 韩芳. 有限差分法的坐标变换诱导误差[J]. 航空学报, 2021, 42(6):124397. Liu J, Wei Y X, Han F. Coordinate transformation in- duced errors of finite difference method[J]. Acta Aero- nautica et Astronautica Sinica, 2021, 42(6):124397(in Chinese).
    [9] 刘君, 韩芳, 魏雁昕. 特定条件下高阶WENO格式计算结果误差[J]. 航空学报, 2022, 43(2):124940. Liu J, Han F, Wei Y X. Numerical errors of high-order WENO schemes under specific conditions[J]. Acta Aero- nautica et Astronautica Sinica, 2022, 43(2):124940(in Chinese).
    [10] 刘君, 韩芳, 魏雁昕. 应用维数分裂方法推广MUSCL和WENO格式的若干问题[J]. 航空学报, 2022, 43(3):125009. Liu J, Han F, Wei Y X. MUSCL and WENO schemes problems generated by dimension splitting approach[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3):125009(in Chinese).
    [11] 刘君. 有计算超声速流场的高精度格式么?[J]. 气动研究与试验, 2022, 34(1):2-14. Liu J. Is there a high order scheme for calculating super- sonic flow fields?[J]. Aerodynamic Research & Experi- ment, 2022, 34(1):2-14(in Chinese).
    [12] Roache P J. Verification and validation in computational science and engineering[M]. Albuquerque:Hermosa, 1998.
    [13] 邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证与确认[J]. 力学进展, 2007, 37(2):279-288. Deng X G, Zong W G, Zhang L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2):279-288(in Chi- nese).
    [14] Roache P J, Ghia K N, White F M. Editorial policy statement on the control of numerical accuracy[J]. ASME Journal of Fluids Engineering, 1986, 108(1):2.
    [15] The Editorial Board. Editorial policy statement on numerical accuracy and experimental uncertainty[J]. AIAA Journal, 1994, 32(1):3.
    [16] The Editorial Board. Journal of heat transfer editorial policy statement on numerical accuracy[J]. ASME Journal of Heat Transfer, 1994, 116(4):797-798.
    [17] 傅德熏, 马延文. 计算流体力学[M]. 北京:高等教育出版社, 2002.

    Fu D X, Ma Y W. Computational fluid dynamics[M]. Beijing:Higher Education Press, 2002.
    [18] 任玉新, 陈海昕. 计算流体力学基础[M]. 北京:清华大学出版社, 2006.
    [19] 吴子牛. 计算流体力学基本原理[M]. 北京:科学出版社, 2001.
    [20] Roy C J. Grid convergence error analysis for mixed-order numerical schemes[J]. AIAA Journal, 2003, 41(4):595-604.
    [21] Van Leer B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
    [22] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
    [23] Shu C W. Essentially non-oscillatory and weighted essen- tially non-oscillatory schemes[J]. Acta Numerica, 2020, 29:701-762.
    [24] Gottlieb S, Shu C W. Total variation diminishing Runge- Kutta schemes[J]. Mathematics of Computation, 1998, 67(221):73-85.
    [25] 刘君, 陈洁, 韩芳. 基于离散等价方程的非结构网格有限差分法[J]. 航空学报, 2020, 41(1):123248. Liu J, Chen J, Han F. Finite difference method for un- structured grid based on discrete equivalent equation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123248(in Chinese).
    [26] Han F, Xu C G, Liu J. Improvement to a general metho- dology for free-stream preservation on curvilinear grids[J]. Physics of Fluids, 2022, 34(11):116111.
    [27] Deng X G, Min Y B, Mao M L, et al. Further studies on Geometric Conservation Law and applications to high- order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239:90-111.
  • 加载中
计量
  • 文章访问数:  31
  • HTML全文浏览量:  1
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-20
  • 修回日期:  2024-01-02
  • 网络出版日期:  2024-03-04

目录

    /

    返回文章
    返回