主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反应性射流中湍流/非湍流界面附近标量输运特性

曹晴晴 李岩 张欣羡 周毅

曹晴晴, 李岩, 张欣羡, 周毅. 反应性射流中湍流/非湍流界面附近标量输运特性[J]. 气体物理, 2024, 9(1): 1-11. doi: 10.19527/j.cnki.2096-1642.1075
引用本文: 曹晴晴, 李岩, 张欣羡, 周毅. 反应性射流中湍流/非湍流界面附近标量输运特性[J]. 气体物理, 2024, 9(1): 1-11. doi: 10.19527/j.cnki.2096-1642.1075
CAO Qingqing, LI Yan, ZHANG Xinxian, ZHOU Yi. Scalar Transport Characteristics Near the Turbulent/Non-Turbulent Interface in a Reactive Jet Flow[J]. PHYSICS OF GASES, 2024, 9(1): 1-11. doi: 10.19527/j.cnki.2096-1642.1075
Citation: CAO Qingqing, LI Yan, ZHANG Xinxian, ZHOU Yi. Scalar Transport Characteristics Near the Turbulent/Non-Turbulent Interface in a Reactive Jet Flow[J]. PHYSICS OF GASES, 2024, 9(1): 1-11. doi: 10.19527/j.cnki.2096-1642.1075

反应性射流中湍流/非湍流界面附近标量输运特性

doi: 10.19527/j.cnki.2096-1642.1075
基金项目: 

国家自然科学基金 91952105

中央高校基本科研业务费专项基金 30921011212

江苏省六大人才峰会项目 2019-SZCY-005

详细信息
    作者简介:

    曹晴晴(1996—) 女,硕士,主要研究方向为计算流体力学。E-mail:1207496954@qq.com

    通讯作者:

    张欣羡(1992—) 女,博士,主要研究方向为流体力学。E-mail:zhangxinxian@buaa.edu.cn

    周毅(1986—) 男,博士,主要研究方向为湍流理论。E-mail:yizhou@njust.edu.cn

  • 中图分类号: O362

Scalar Transport Characteristics Near the Turbulent/Non-Turbulent Interface in a Reactive Jet Flow

  • 摘要: 湍流/非湍流界面(turbulent/non-turbulent interface, T/NTI)层分隔开湍流区和非湍流区, 研究T/NTI有利于加深对湍流区和非湍流区之间传质的理解。通过开展射流和环境流间发生二级非平衡基元反应(A+B→R)流场的数值模拟, 研究了该流场中各组分在T/NTI附近的化学反应和标量输运特性。研究结果表明: 反应性射流流场中对流项在湍流区域的标量输运中占主导地位。射流的上游处化学反应较为剧烈且随着流向逐渐减弱, 在T/NTI层内及其附近均存在显著的化学反应, 而下游T/NTI层附近的化学反应主要发生在远离T/NTI层的湍流核心区。在T/NTI层附近, 反应物A和生成物R的输运机制呈现类似但相反的趋势。在无旋边界附近, 反应物A和生成物R的输运主要由扩散和对流作用共同影响, 但其浓度几乎不随时间发生变化。在T/NTI层内, 反应物B的输运主要由对流作用影响, T/NTI附近的流动阻碍化学反应后所余较少的反应物B向无旋边界输运。

     

  • 图  1  反应性平面射流

    Figure  1.  Reactive planar jet

    图  2  反应性射流无量纲后平均流向速度和流向速度脉动均方根的法向分布

    Figure  2.  Nondimensionalized mean streamwise velocity and RMS values of streamwise velocity fluctuations in the normal direction for a reactive jet flow

    图  3  反应性射流无量纲平均混合浓度分数的法向分布

    Figure  3.  Nondimensionalized mean mixture fraction in the normal direction for a reactive jet flow

    图  4  反应性射流基于〈u〉-UA和〈ξ〉的射流半宽的流向分布

    Figure  4.  Streamwise distribution of a reactive jet halfwidth based on 〈u〉-UA and 〈ξ

    图  5  湍流区域的体积分数VT随涡量阈值ωth*的变化情况

    Figure  5.  Change of volume fraction VT in turbulent region with vorticity threshold ωth*

    图  6  yoz平面上带有无旋边界的瞬时无量纲涡量

    Figure  6.  Instantaneous nondimensionalized vorticity with irrotational boundary on the yoz plane

    图  7  yoz平面上带有无旋边界的反应物A、B和生成物R的瞬时无量纲浓度

    Figure  7.  Instantaneous nondimensionalized concentrations of reactant A, B and resultant R with irrotational boundary on the yoz plane

    图  8  带有无旋边界的生成物R的瞬时化学反应速率

    Figure  8.  Instantaneous chemical reaction rate of resultant R with irrotational boundary

    图  9  各组分标量输运方程中各项沿中心线的瞬时法向演化

    Figure  9.  Instantaneous normal evolution of the terms in the scalar transport equation along the center line

    图  10  涡量和各组分浓度的条件平均统计

    Figure  10.  Conditional average of vorticity and concentration of each component

    图  11  反应物A的标量输运方程中各项在x/d=10和20的条件平均统计

    Figure  11.  Conditional average of the terms in the scalar transport equation for the reactant A at x/d=10 and 20

    图  12  反应物B的标量输运方程中各项在x/d=10和20的条件平均统计

    Figure  12.  Conditional average of the terms in the scalar transport equation for the reactant B at x/d=10 and 20

    图  13  生成物R的标量输运方程中各项在x/d=10和20的条件平均统计

    Figure  13.  Conditional average of the terms in the scalar transport equation for the resultant R at x/d=10 and 20

    表  1  反应性射流数值模拟的几何细节及数值参数

    Table  1.   Geometry details and numerical parameters of the direct numerical simulation of reactive planar jet

    Re UA/UJ ΓA0/ΓB0 Da Sc Lx/d Ly/d Lz/d Nx Ny Nz
    2 000 0.1 1 5 0.71 30 23 8 701 659 120
    下载: 导出CSV
  • [1] da Silva C B, Hunt J C R, Eames I, et al. Interfacial layers between regions of different turbulence intensity[J]. Annual Review of Fluid Mechanics, 2014, 46: 567-590. doi: 10.1146/annurev-fluid-010313-141357
    [2] 李思成, 王晋军, 潘翀, 等. 扰流板作用下湍流/非湍流界面特性[J]. 气体物理, 2022, 7(6): 63-73. doi: 10.19527/j.cnki.2096-1642.0966

    Li S C, Wang J J, Pan C, et al. Properties of the turbulent/non-turbulent interface under the influence of fence[J]. Physics of Gases, 2022, 7(6): 63-73(in Chinese). doi: 10.19527/j.cnki.2096-1642.0966
    [3] Breda M, Buxton O R. Behaviour of small-scale turbulence in the turbulent/non-turbulent interface region of developing turbulent jets[J]. Journal of Fluid Mechanics, 2019, 879: 187-216. doi: 10.1017/jfm.2019.676
    [4] 张爽, 时钟. 稳定分层流密度界面处湍流混合与分形结构[J]. 力学学报, 2015, 47(4): 547-556.

    Zhang S, Shi Z. Turbulent mixing and fractal structure at a density interface in a stably stratified fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 547-556(in Chinese).
    [5] Corrsin S, Kistler A L. Free-stream boundaries of turbulent flows[R]. NACA-TR-1244, 1955.
    [6] Chauhan K, Philip J, de Silva C M, et al. The turbulent/non-turbulent interface and entrainment in a boundary layer[J]. Journal of Fluid Mechanics, 2014, 742: 119-151. doi: 10.1017/jfm.2013.641
    [7] 李思成, 吴迪, 崔光耀, 等. 低雷诺数沟槽表面湍流/非湍流界面特性的实验研究[J]. 力学学报, 2020, 52(6): 1632-1644.

    Li S C, Wu D, Cui G Y, et al. Experimental study on properties of turbulent/non-turbulent interface over riblets surfaces at low Reynolds numbers[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1632-1644(in Chinese).
    [8] Hayashi M, Watanabe T, Nagata K. The relation between shearing motions and the turbulent/non-turbulent interface in a turbulent planar jet[J]. Physics of Fluids, 2021, 33(5): 055126. doi: 10.1063/5.0045376
    [9] Nagata R, Watanabe T, Nagata K. Turbulent/non-turbulent interfaces in temporally evolving compressible planar jets[J]. Physics of Fluids, 2018, 30(10): 105109. doi: 10.1063/1.5047395
    [10] Watanabe T, Jaulino R, Taveira R R, et al. Role of an isolated eddy near the turbulent/non-turbulent interface layer[J]. Physical Review Fluids, 2017, 2(9): 094607. doi: 10.1103/PhysRevFluids.2.094607
    [11] Yang Y, Wang H F, Pope S B, et al. Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1241-1249. doi: 10.1016/j.proci.2012.08.015
    [12] Zhou X J, Jiang X, Martinez D M. The effects of chemical kinetic mechanisms on large eddy simulation (LES) of a nonpremixed hydrogen jet flame[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11427-11440. doi: 10.1016/j.ijhydene.2016.04.079
    [13] Grandmaison E W, Zettler N L. Turbulent mixing in coflowing plane jets[J]. The Canadian Journal of Chemical Engineering, 1989, 67(6): 889-897. doi: 10.1002/cjce.5450670604
    [14] Cai J, Dinger M J, Li W, et al. Experimental study of three-scalar mixing in a turbulent coaxial jet[J]. Journal of Fluid Mechanics, 2011, 685: 495-531. doi: 10.1017/jfm.2011.337
    [15] Nagaya S, Iwano K, Sakai Y, et al. Direct numerical simulation of planar turbulent jet with chemical reaction[C]. Proceedings of Mechanical Engineering Congress, Japan. The Japan Society of Mechanical Engineers, 2017: J0520302.
    [16] Watanabe T, Sakai Y, Nagata K, et al. Visualization of turbulent reactive jet by using direct numerical simulation[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2013, 4(S1): 1341001.
    [17] 王芳, 曾玺, 孙延林, 等. 射流预氧化流化床气化炉中黏结性煤的反应特性[J]. 化工学报, 2015, 66(6): 2212-2219.

    Wang F, Zeng X, Sun Y L, et al. Reaction characteristics of caking coal in jetting pre-oxidation fluidized bed gasifier[J]. CIESC Journal, 2015, 66(6): 2212-2219(in Chinese).
    [18] 李岩, 田阿慧, 周毅. 反应性双射流中标量输运和化学反应特性[J]. 化工学报, 2022, 73(5): 1947-1963.

    Li Y, Tian A H, Zhou Y. Characteristics of scalar transport and chemical reaction in reactive dual jets[J]. CIESC Journal, 2022, 73(5): 1947-1963(in Chinese).
    [19] Watanabe T, Sakai Y, Nagata K, et al. LES-Lagrangian particle method for turbulent reactive flows based on the approximate deconvolution model and mixing model[J]. Journal of Computational Physics, 2015, 294: 127-148. doi: 10.1016/j.jcp.2015.03.038
    [20] Komen E, Shams A, Camilo L, et al. Quasi-DNS capabilities of OpenFOAM for different mesh types[J]. Computers & Fluids, 2014, 96: 87-104.
    [21] Stanley S A, Sarkar S, Mellado J P. A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[J]. Journal of Fluid Mecha-nics, 2002, 450: 377-407. doi: 10.1017/S0022112001006644
    [22] Zhou Y, Nagata K, Sakai Y, et al. Dual-plane turbulent jets and their non-Gaussian velocity fluctuations[J]. Physical Review Fluids, 2018, 3(12): 124604. doi: 10.1103/PhysRevFluids.3.124604
    [23] Klein M, Sadiki A, Janicka J. A digital filter based ge-neration of inflow data for spatially developing direct numerical or large eddy simulations[J]. Journal of Computational Physics, 2003, 186(2): 652-665. doi: 10.1016/S0021-9991(03)00090-1
    [24] Gutmark E, Wygnanski I. The planar turbulent jet[J]. Journal of Fluid Mechanics, 1976, 73(3): 465-495. doi: 10.1017/S0022112076001468
    [25] Ramaprian B R, Chandrasekhara M S. LDA measurements in plane turbulent jets[J]. Journal of Fluids Engineering, 1985, 107(2): 264-271. doi: 10.1115/1.3242472
    [26] Watanabe T, Sakai Y, Nagata K, et al. Reactive scalar field near the turbulent/non-turbulent interface in a planar jet with a second-order chemical reaction[J]. Physics of Fluids, 2014, 26(10): 105111. doi: 10.1063/1.4900403
    [27] Watanabe T, Sakai Y, Nagata K, et al. Experimental study on the reaction rate of a second-order chemical reaction in a planar liquid jet[J]. AIChE Journal, 2014, 60(11): 3969-3988.
    [28] Zhang X X, Watanabe T, Nagata K. Turbulent/nonturbulent interfaces in high-resolution direct numerical simulation of temporally evolving compressible turbulent boundary layers[J]. Physical Review Fluids, 2018, 3(9): 094605.
    [29] Zhang X X, Watanabe T, Nagata K. Passive scalar mixing near turbulent/non-turbulent interface in compressible turbulent boundary layers[J]. Physica Scripta, 2019, 94(4): 044002.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  8
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-10-08

目录

    /

    返回文章
    返回