[1] |
叶培建, 彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学, 2006, 8(10):13-18. Ye P J, Peng J. Deep space exploration and its prospect in China[J]. Engineering Science, 2006, 8(10):13-18(in Chinese).
|
[2] |
Duxbury T C. NASA stardust sample return mission[C]. 35th COSPAR Scientific Assembly. Paris, 2004.
|
[3] |
Lo M W, Williams B G, Bollman W, et al. G E enesis mission design[R]. AIAA 1998-4468, 1998.
|
[4] |
Kawaguchi J I. The Hayabusa mission-its seven years flight[C]. 2011 Symposium on VLSI Circuits-Digest of Technical Papers. Kyoto:IEEE, 2011:2-5.
|
[5] |
杨孟飞, 张高, 张伍, 等. 探月三期月地高速再入返回飞行器技术设计与实现[J]. 中国科学:技术科学, 2015, 45(2):111-123. Yang M F, Zhang G, Zhang W, et al. Technique design and realization of the circumlunar return and reentry space- craft of 3rd phase of chinese lunar exploration program[J]. Sci Sin Tech, 2015, 45(2):111-123(in Chinese).
|
[6] |
李齐, 魏昊功, 张正峰, 等. 月地高速再入返回器弹道重建与气动力参数辨识[J]. 宇航学报, 2021, 42(8):1043-1050. Li Q, Wei H G, Zhang Z F, et al. Trajectory reconstruc- tion and aerodynamic parameter identification of lunar- earth high-speed reentry capsule[J]. Journal of Astronau- tics, 42(8):1043-1050(in Chinese).
|
[7] |
展鹏飞. 重返月球一举多得——谈特朗普签署重返月球的航天政策令[J]. 太空探索, 2018(2):24-25. Zhan P F. Returning to the moon kills multiple birds with one stone-talk about trump signing a spacepolicy order to return to the moon[J]. Space Exploration, 2018(2):24- 25(in Chinese).
|
[8] |
中华人民共和国国务院新闻办公室. 2021中国的航天[J]. 中国航天, 2022(2):36-45. Information office of the state council of the People's Re- public of China. 2021 China's space[J]. Aerospace China, 2022(2):36-45(in Chinese).
|
[9] |
Mehta R C. Aerodynamic drag coefficient for various reentry configurations at high speed[R]. AIAA 2006-3173, 2006.
|
[10] |
Tang C Y, Wright M J. Analysis of the forebody aeroheat- ing environment during genesis sample return capsule re- entry[R]. AIAA 2007-1207, 2007.
|
[11] |
Foust J. No major issues found with Artemis 1 mission[EB/OL]. (2023-03-07). Http://spacenews.com/no-major-issues-found-with-artemis-1-mission/.
|
[12] |
Olynick D, Kontinos D, Arnold J O. Aerothermal effects of cavities and protuberances for high-speed sample return capsules[R]. PROJECT:RTOP 865-10-05, 1998.
|
[13] |
杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报, 2018, 36(2):183-195. Yang W B, Shen Q, Zhu D H, et al. Tendency and cur- rent status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, Vol. 36(2):183-195(in Chinese).
|
[14] |
Kruse R L. Transition and flow reattachment behind an Apollo-like body at Mach numbers to 9[R]. NASA-TN- D-4645, 1968.
|
[15] |
Park C, Tauber M E. Heatshielding problems of planetary entry-a review[R]. AIAA 99-3415, 1999.
|
[16] |
Edquist K T, Liechty D S, Hollis B R, et al. Aeroheating environments for a mars smart lander[J]. Journal of Spacecraft and Rockets, 2006, 43(2):330-339.
|
[17] |
Edquist K T, Hollis B R, Christopher O. Johnston. Mars Science Laboratory Heatshield[R]. NASA Ames Research Center, Hypersonic Vehicle Flight Prediction Workshop, June 21, 2017.
|
[18] |
Horvath T J, Berry S A, Hollis B R, et al. Boundary layer transition on slender cones in conventional and low disturb- ance Mach 6 wind tunnels[R]. AIAA-2002-2743, 2002.
|
[19] |
董维中. 气体模型对高超声速再入钝体气动参数计算影响的研究[J]. 空气动力学学报, 2001, 19(2):197-202. Dong W Z. Thermal and chemical model effect on the cal- culation of aerodynamicparameter for hypersonic reentry blunt body[J]. Acta Aerodynamica Sinica, 2001, 19(2):197-202(in Chinese).
|
[20] |
Hollis B R. Distributed roughness effects on blunt-body transition and turbulent heating[R]. AIAA 2014-0238, 2014.
|
[21] |
Dunn M G, Kang S. Theoretical and experimental studies of reentry plasmas[R]. NASA-CR-2232, 1973.
|
[22] |
苗文博, 程晓丽, 艾邦成. 来流条件对热流组分扩散项影响效应分析[J]. 空气动力学学报, 2011, 29(4):476-480. Miao W B, Cheng X L, Ai B C. Flow configuration effects on mass diffusion part of heat-flux in thermal- chemical flows[J]. Acta Aerodynamica Sinica, 2011, 29(4):476-480(in Chinese).
|
[23] |
Liou M S. A further development of the AUSM+ scheme towards robust and accurate solutions for all speeds[R]. AIAA 2003-4116, 2003.
|
[24] |
阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006. Yan C. Computational fluid mechanics methods and applications[M]. Beijing:Beihang University Press, 2006(in Chinese).
|
[25] |
Langtry R B, Menter F R. Correlation-based transition mod- eling for unstructured parallelized computational fluid dy- namics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
|
[26] |
Langel C M, Chow R, Van Dam C P, et al. A computa- tional approach to simulating the effects of realistic surface roughness on boundary layer transition[R]. AIAA 2014- 0234, 2014.
|
[27] |
Wilcox D C. Turbulence modeling for CFD[M]. 3rd ed. DCW Industries, 2006.
|
[28] |
Yang M C, Xiao Z X. Distributed roughness induced transition on wind-turbine airfoils simulated by four-equa- tion k-ω-γ-Ar transition model[J]. Renewable Energy, 2019, 135:1166-1177.
|
[29] |
Bose D, White T, Mahzari M, et al. Reconstruction of aerothermal environment and heat shield response of mars science laboratory[J]. Journal of Spacecraft and Rockets, 2014, 51(4):1174-1184.
|
[30] |
Dassler P, Kožulovic ' D, Fiala A. Modelling of roughness- induced transition using local variables[C]. V European Conference on Computational Fluid Dynamics. Lisbon:ECCOMAS CFD, 2010.
|