主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深空再入飞行器烧蚀粗糙表面高超声速转捩预测

李齐 赵瑞 陈智 郭斌 王强

李齐, 赵瑞, 陈智, 郭斌, 王强. 深空再入飞行器烧蚀粗糙表面高超声速转捩预测[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1073
引用本文: 李齐, 赵瑞, 陈智, 郭斌, 王强. 深空再入飞行器烧蚀粗糙表面高超声速转捩预测[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1073
LI Qi, ZHAO Rui, CHEN Zhi, GUO Bin, WANG Qiang. Prediction of Hypersonic Boundary Layer Transition on Ablative Rough Surfaces of Deep Space Reentry Capsules[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1073
Citation: LI Qi, ZHAO Rui, CHEN Zhi, GUO Bin, WANG Qiang. Prediction of Hypersonic Boundary Layer Transition on Ablative Rough Surfaces of Deep Space Reentry Capsules[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1073

深空再入飞行器烧蚀粗糙表面高超声速转捩预测

doi: 10.19527/j.cnki.2096-1642.1073
基金项目: 

国家自然科学基金(11902025)

详细信息
    作者简介:

    李齐(1985-)女,研究员,主要研究方向为深空探测进/再入航天器气动设计与分析。E-mail:qi-ge-ge@163.com

  • 中图分类号: V211.3

Prediction of Hypersonic Boundary Layer Transition on Ablative Rough Surfaces of Deep Space Reentry Capsules

  • 摘要: 深空再入飞行器为提高气动减速效率, 一般采用大钝度迎风外形以及烧蚀降热型防热结构。 而扁平的前体外形与气动加热烧蚀导致表面粗糙度急剧增加等因素, 极易造成飞行器迎风面流动失稳, 流动出现转捩甚至演化为湍流, 使表面热流分布发生巨大变化, 给飞行器安全带来极大挑战。 国内以往对大钝头再入器微观形貌变化下高超声速边界层失稳机制和转捩模拟的研究开展很少。 文章以大钝头防热罩与沙粒式分布粗糙元为研究对象,分别利用基于高超声速与粗糙元修正的γ-Reθ转捩模式和k-ω-γ转捩模式, 分析了高超声速来流条件下分布粗糙元等效粗糙高度、来流 Reynolds 数、攻角以及化学非平衡基本流对大钝头迎风表面的间歇因子分布、边界层转捩位置以及热流分布的影响, 研究了深空再入飞行器烧蚀粗糙表面的高超声速边界层转捩发展规律与气动热影响规律。

     

  • [1] 叶培建, 彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学, 2006, 8(10):13-18. Ye P J, Peng J. Deep space exploration and its prospect in China[J]. Engineering Science, 2006, 8(10):13-18(in Chinese).
    [2] Duxbury T C. NASA stardust sample return mission[C]. 35th COSPAR Scientific Assembly. Paris, 2004.
    [3] Lo M W, Williams B G, Bollman W, et al. G E enesis mission design[R]. AIAA 1998-4468, 1998.
    [4] Kawaguchi J I. The Hayabusa mission-its seven years flight[C]. 2011 Symposium on VLSI Circuits-Digest of Technical Papers. Kyoto:IEEE, 2011:2-5.
    [5] 杨孟飞, 张高, 张伍, 等. 探月三期月地高速再入返回飞行器技术设计与实现[J]. 中国科学:技术科学, 2015, 45(2):111-123. Yang M F, Zhang G, Zhang W, et al. Technique design and realization of the circumlunar return and reentry space- craft of 3rd phase of chinese lunar exploration program[J]. Sci Sin Tech, 2015, 45(2):111-123(in Chinese).
    [6] 李齐, 魏昊功, 张正峰, 等. 月地高速再入返回器弹道重建与气动力参数辨识[J]. 宇航学报, 2021, 42(8):1043-1050. Li Q, Wei H G, Zhang Z F, et al. Trajectory reconstruc- tion and aerodynamic parameter identification of lunar- earth high-speed reentry capsule[J]. Journal of Astronau- tics, 42(8):1043-1050(in Chinese).
    [7] 展鹏飞. 重返月球一举多得——谈特朗普签署重返月球的航天政策令[J]. 太空探索, 2018(2):24-25. Zhan P F. Returning to the moon kills multiple birds with one stone-talk about trump signing a spacepolicy order to return to the moon[J]. Space Exploration, 2018(2):24- 25(in Chinese).
    [8] 中华人民共和国国务院新闻办公室. 2021中国的航天[J]. 中国航天, 2022(2):36-45. Information office of the state council of the People's Re- public of China. 2021 China's space[J]. Aerospace China, 2022(2):36-45(in Chinese).
    [9] Mehta R C. Aerodynamic drag coefficient for various reentry configurations at high speed[R]. AIAA 2006-3173, 2006.
    [10] Tang C Y, Wright M J. Analysis of the forebody aeroheat- ing environment during genesis sample return capsule re- entry[R]. AIAA 2007-1207, 2007.
    [11] Foust J. No major issues found with Artemis 1 mission[EB/OL]. (2023-03-07). Http://spacenews.com/no-major-issues-found-with-artemis-1-mission/.
    [12] Olynick D, Kontinos D, Arnold J O. Aerothermal effects of cavities and protuberances for high-speed sample return capsules[R]. PROJECT:RTOP 865-10-05, 1998.
    [13] 杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报, 2018, 36(2):183-195. Yang W B, Shen Q, Zhu D H, et al. Tendency and cur- rent status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, Vol. 36(2):183-195(in Chinese).
    [14] Kruse R L. Transition and flow reattachment behind an Apollo-like body at Mach numbers to 9[R]. NASA-TN- D-4645, 1968.
    [15] Park C, Tauber M E. Heatshielding problems of planetary entry-a review[R]. AIAA 99-3415, 1999.
    [16] Edquist K T, Liechty D S, Hollis B R, et al. Aeroheating environments for a mars smart lander[J]. Journal of Spacecraft and Rockets, 2006, 43(2):330-339.
    [17] Edquist K T, Hollis B R, Christopher O. Johnston. Mars Science Laboratory Heatshield[R]. NASA Ames Research Center, Hypersonic Vehicle Flight Prediction Workshop, June 21, 2017.
    [18] Horvath T J, Berry S A, Hollis B R, et al. Boundary layer transition on slender cones in conventional and low disturb- ance Mach 6 wind tunnels[R]. AIAA-2002-2743, 2002.
    [19] 董维中. 气体模型对高超声速再入钝体气动参数计算影响的研究[J]. 空气动力学学报, 2001, 19(2):197-202. Dong W Z. Thermal and chemical model effect on the cal- culation of aerodynamicparameter for hypersonic reentry blunt body[J]. Acta Aerodynamica Sinica, 2001, 19(2):197-202(in Chinese).
    [20] Hollis B R. Distributed roughness effects on blunt-body transition and turbulent heating[R]. AIAA 2014-0238, 2014.
    [21] Dunn M G, Kang S. Theoretical and experimental studies of reentry plasmas[R]. NASA-CR-2232, 1973.
    [22] 苗文博, 程晓丽, 艾邦成. 来流条件对热流组分扩散项影响效应分析[J]. 空气动力学学报, 2011, 29(4):476-480. Miao W B, Cheng X L, Ai B C. Flow configuration effects on mass diffusion part of heat-flux in thermal- chemical flows[J]. Acta Aerodynamica Sinica, 2011, 29(4):476-480(in Chinese).
    [23] Liou M S. A further development of the AUSM+ scheme towards robust and accurate solutions for all speeds[R]. AIAA 2003-4116, 2003.
    [24] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006. Yan C. Computational fluid mechanics methods and applications[M]. Beijing:Beihang University Press, 2006(in Chinese).
    [25] Langtry R B, Menter F R. Correlation-based transition mod- eling for unstructured parallelized computational fluid dy- namics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
    [26] Langel C M, Chow R, Van Dam C P, et al. A computa- tional approach to simulating the effects of realistic surface roughness on boundary layer transition[R]. AIAA 2014- 0234, 2014.
    [27] Wilcox D C. Turbulence modeling for CFD[M]. 3rd ed. DCW Industries, 2006.
    [28] Yang M C, Xiao Z X. Distributed roughness induced transition on wind-turbine airfoils simulated by four-equa- tion k-ω-γ-Ar transition model[J]. Renewable Energy, 2019, 135:1166-1177.
    [29] Bose D, White T, Mahzari M, et al. Reconstruction of aerothermal environment and heat shield response of mars science laboratory[J]. Journal of Spacecraft and Rockets, 2014, 51(4):1174-1184.
    [30] Dassler P, Kožulovic ' D, Fiala A. Modelling of roughness- induced transition using local variables[C]. V European Conference on Computational Fluid Dynamics. Lisbon:ECCOMAS CFD, 2010.
  • 加载中
计量
  • 文章访问数:  18
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2023-09-08
  • 网络出版日期:  2023-10-30

目录

    /

    返回文章
    返回