主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数据驱动的气动热建模预测方法总结与展望

王泽 宋述芳 王旭 张伟伟

王泽, 宋述芳, 王旭, 张伟伟. 数据驱动的气动热建模预测方法总结与展望[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1068
引用本文: 王泽, 宋述芳, 王旭, 张伟伟. 数据驱动的气动热建模预测方法总结与展望[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1068
WANG Ze, SONG Shufang, WANG Xu, ZHANG Weiwei. Summary and Prospect of Data-Driven Aerothermal Modeling Prediction Methods[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1068
Citation: WANG Ze, SONG Shufang, WANG Xu, ZHANG Weiwei. Summary and Prospect of Data-Driven Aerothermal Modeling Prediction Methods[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1068

数据驱动的气动热建模预测方法总结与展望

doi: 10.19527/j.cnki.2096-1642.1068
基金项目: 

国家自然科学基金(92152301, 12072282)

详细信息
    作者简介:

    王泽(1998-)男,博士,主要研究气动热建模预测。E-mail:bdqywz123@163.com

    通讯作者:

    张伟伟(1979-)男,教授,主要研究智能流体力学和气动弹性力学。E-mail:aeroelastic@nwpu.edu.cn

  • 中图分类号: V211.47

Summary and Prospect of Data-Driven Aerothermal Modeling Prediction Methods

  • 摘要: 气动热的准确预测是指导高超声速飞行器设计的基础。在经典气动热预测方法愈发难以满足工程中高效准确的气动热预测需求的背景下,近年来蓬勃发展的数据驱动气动热建模预测方法逐渐成为气动热预测的新范式。对此,首先阐述了数据驱动气动热建模预测方法和经典气动热预测方法的相互关系。然后,从建模思路上将数据驱动气动热建模预测方法归纳为3类,即气动热特征空间降维建模预测、气动热逐点建模预测和气动热物理信息嵌入建模预测,并对这3类方法进行了详细介绍和分析总结。数据驱动气动热建模预测方法不仅比工程算法准确,而且和采样方法结合后,还能够有效降低实验测量和数值计算的工作量,给出的模型也更加高效简洁。最后,对数据驱动气动热建模预测方法的发展趋势进行了展望,指出数据驱动技术与经典气动热预测方法的深度结合、气动热物理信息嵌入建模预测方法和气动热预测大模型将会是未来研究的要点。

     

  • [1] 张攀峰, 詹世革. 从国家自然科学基金资助看高超声速流动研究的发展现状[J]. 航空学报, 2015, 36(1):1-6. Zhang P F, Zhan S G. Development of hypersonic flow research in China based on supported projects of NSFC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):1-6(in Chinese).
    [2] 叶正寅, 孟宪宗, 刘成, 等. 高超声速飞行器气动弹性的近期进展与发展展望[J]. 空气动力学学报, 2018, 36(6):984-994. Ye Z Y, Meng X Z, Liu C, et al. Progress and prospects on aeroelasticity of hypersonic vehicles[J]. Acta Aerody- namica Sinica, 2018, 36(6):984-994(in Chinese).
    [3] Anderson J D Jr. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston:AIAA, 2006.
    [4] Bertin J J, Cummings R M. Fifty years of hypersonics:where we' ve been, where we' re going[J]. Progress in Aerospace Sciences, 2003, 39(6/7):511-536.
    [5] Bertin J J, Cummings R M. Critical hypersonic aerother- modynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38:129-157.
    [6] Zhu Y H, Peng W, Xu R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10):1929-1953.
    [7] 梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报, 2021, 42(4):409-424. Liang W, Jin H, Meng S H, et al. Research progress on new thermal protection mechanism of hypersonic vehicles[J]. Journal of Astronautics, 2021, 42(4):409-424(in Chinese).
    [8] 李依依, 张玉妥. 哥伦比亚空难与材料[C]. 中国科协2004年学术年会大会特邀报告汇编. 海南, 2004:72-84. Li Y Y, Zhang Y T. Colombian air disasters and materials[C]. China Association for Science and Technology 2004 Annual Conference invited report compilation. Hainan, 2004:72-84(in Chinese).
    [9] McNamara J J, Friedmann P P. Aeroelastic and aerother- moelastic analysis in hypersonic flow:past, present, and future[J]. AIAA Journal, 2011, 49(6):1089-1122.
    [10] Livne E, Weisshaar T A. Aeroelasticity of nonconventional airplane configurations-past and future[J]. Journal of Air- craft, 2003, 40(6):1047-1065.
    [11] 陈鑫. 高超声速飞行器气动-热-结构建模及模型降阶研究[D]. 北京:北京理工大学, 2015. Chen X. Studies on aerodynamic-structural-thermal modeling and reduced order modeling of hypersonic vehicles[D]. Beijing:Beijing Institute of Technology, 2015(in Chinese).
    [12] Hallion R P. The path to space shuttle:the evolution of lifting reentry technology[J]. Journal of the British Inter- planetary Society, 1983, 36.
    [13] Ahmed M Y, Qin N. Recent advances in the aerothermo- dynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6):425-449.
    [14] 罗长童, 胡宗民, 刘云峰, 等. 高超声速风洞气动力/热试验数据天地相关性研究进展[J]. 实验流体力学, 2020, 34(3):78-89. Luo C T, Hu Z M, Liu Y F, et al. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3):78-89(in Chinese).
    [15] 龚安龙, 周伟江, 纪楚群, 等. 高超声速粘性干扰效应相关性研究[J]. 宇航学报, 2008, 29(6):1706-1710. Gong A L, Zhou W J, Ji C Q, et al. Study on correlation of hypersonic viscous interaction[J]. Journal of Astronautics, 2008, 29(6):1706-1710(in Chinese).
    [16] Josyula E. Hypersonic nonequilibrium flows:fundamentals and recent advances[M]. Reston:American Institute of Aeronautics and Astronautics, Inc, 2015.
    [16] Josyula E. Hypersonic nonequilibrium flows:fundamentals and recent advances[M]. Reston:American Institute of Aeronautics and Astronautics, Inc, 2015.
    [17] Yuan Z C, Huang S Z, Gao X W, et al. effects of surface-catalysis efficiency on aeroheating characteristics in hypersonic flow[J]. Journal of Aerospace Engineering, 2017, 30(3):04016086.
    [17] Yuan Z C, Huang S Z, Gao X W, et al. effects of surface-catalysis efficiency on aeroheating characteristics in hypersonic flow[J]. Journal of Aerospace Engineering, 2017, 30(3):04016086.
    [18] Davis J D, Sturtevant B. Separation length in high- enthalpy shock/boundary-layer interaction[J]. Physics of Fluids, 2000, 12(10):2661-2687.
    [18] Davis J D, Sturtevant B. Separation length in high- enthalpy shock/boundary-layer interaction[J]. Physics of Fluids, 2000, 12(10):2661-2687.
    [19] 凌岗. 尺度效应对高超声速二元进气道自起动性能的影响[D]. 合肥:中国科学技术大学, 2014. Ling G. The influence of model scale on the starting characteristics of 2D hypersonic inlets[D]. Hefei:University of Science and Technology of China, 2014(in Chinese).
    [19] 凌岗. 尺度效应对高超声速二元进气道自起动性能的影响[D]. 合肥:中国科学技术大学, 2014. Ling G. The influence of model scale on the starting characteristics of 2D hypersonic inlets[D]. Hefei:University of Science and Technology of China, 2014(in Chinese).
    [20] Tu G H, Chen J Q, Yuan X X, et al. Progress in flight tests of hypersonic boundary layer transition[J]. Acta Mechanica Sinica, 2021, 37(11):1589-1609.
    [20] Tu G H, Chen J Q, Yuan X X, et al. Progress in flight tests of hypersonic boundary layer transition[J]. Acta Mechanica Sinica, 2021, 37(11):1589-1609.
    [21] Kou J Q, Zhang W W. Data-driven modeling for unsteady aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 125:100725.
    [21] Kou J Q, Zhang W W. Data-driven modeling for unsteady aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 125:100725.
    [22] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1):325-345. Peng Z Y, Shi Y L, Gong H M, et al. Hypersonic aero- heating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345(in Chinese).
    [22] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1):325-345. Peng Z Y, Shi Y L, Gong H M, et al. Hypersonic aero- heating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345(in Chinese).
    [23] 喻成璋, 刘卫华. 高超声速飞行器气动热预测技术研究进展[J]. 航空科学技术, 2021, 32(2):14-21. Yu C Z, Liu W H. Research status of aeroheating prediction technology for hypersonic aircraft[J]. Aeronautical Science & Technology, 2021, 32(2):14-21(in Chinese).
    [23] 喻成璋, 刘卫华. 高超声速飞行器气动热预测技术研究进展[J]. 航空科学技术, 2021, 32(2):14-21. Yu C Z, Liu W H. Research status of aeroheating prediction technology for hypersonic aircraft[J]. Aeronautical Science & Technology, 2021, 32(2):14-21(in Chinese).
    [24] Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 25(2):73-85.
    [24] Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 25(2):73-85.
    [25] Kemp N H, Riddell F R. Heat transfer to satellite vehicles re-entering the atmosphere[J]. Journal of Jet Propulsion, 1957, 27(2):132-137.
    [25] Kemp N H, Riddell F R. Heat transfer to satellite vehicles re-entering the atmosphere[J]. Journal of Jet Propulsion, 1957, 27(2):132-137.
    [26] Cohen N B. Boundary-layer similar solutions and correlation equations for laminar heat-transfer distribution in equilibrium air at velocities up to 41100 feet per second[R]. NASA TR R-118, 1961.
    [26] Cohen N B. Boundary-layer similar solutions and correlation equations for laminar heat-transfer distribution in equilibrium air at velocities up to 41100 feet per second[R]. NASA TR R-118, 1961.
    [27] Lees L. Laminar heat transfer over blunt-nosed bodies at hypersonic flight speeds[J]. Journal of Jet Propulsion, 1956, 26(4):259-269.
    [27] Lees L. Laminar heat transfer over blunt-nosed bodies at hypersonic flight speeds[J]. Journal of Jet Propulsion, 1956, 26(4):259-269.
    [28] Eckert E R. Engineering relations for friction and heat transfer to surfaces in high velocity flow[J]. Journal of the Aeronautical Sciences, 1955, 22(8):585-587.
    [28] Eckert E R. Engineering relations for friction and heat transfer to surfaces in high velocity flow[J]. Journal of the Aeronautical Sciences, 1955, 22(8):585-587.
    [29] Stollery J L, Bates L. Turbulent hypersonic viscous interaction[J]. Journal of Fluid Mechanics, 1974, 63(1):145-156.
    [29] Stollery J L, Bates L. Turbulent hypersonic viscous interaction[J]. Journal of Fluid Mechanics, 1974, 63(1):145-156.
    [30] DeJarnette F R, Hamilton H H. Aerodynamic heating on 3-D bodies including the effects of entropy-layer swallowing[J]. Journal of Spacecraft and Rockets, 1975, 12(1):5-12.
    [30] DeJarnette F R, Hamilton H H. Aerodynamic heating on 3-D bodies including the effects of entropy-layer swallowing[J]. Journal of Spacecraft and Rockets, 1975, 12(1):5-12.
    [31] Adams J C, Martindale W R. Hypersonic lifting body windward surface flow-field analysis for high angles of incidence[R]. AEDC-TR-73-2, 1973.
    [31] Adams J C, Martindale W R. Hypersonic lifting body windward surface flow-field analysis for high angles of incidence[R]. AEDC-TR-73-2, 1973.
    [32] Vanmol D O, Anderson J D Jr. Heat transfer characteristics of hypersonic waveriders with an emphasis on leading edge effects[R]. AIAA-92-2920, 1992.
    [32] Vanmol D O, Anderson J D Jr. Heat transfer characteristics of hypersonic waveriders with an emphasis on leading edge effects[R]. AIAA-92-2920, 1992.
    [33] 张志成. 高超声速气动热和热防护[M]. 北京:国防工业出版社, 2003:104-105. Zhang Z C. Hypersonic aerothermodynamic and thermal protection[M]. Beijing:National Defense Industry Press, 2003:104-105(in Chinese).
    [33] 张志成. 高超声速气动热和热防护[M]. 北京:国防工业出版社, 2003:104-105. Zhang Z C. Hypersonic aerothermodynamic and thermal protection[M]. Beijing:National Defense Industry Press, 2003:104-105(in Chinese).
    [34] Matting F W. Approximate bridging relations in the transitional regime between continuum and free-molecule flows[J]. Journal of Spacecraft and Rockets, 1971, 8(1):35-40.
    [34] Matting F W. Approximate bridging relations in the transitional regime between continuum and free-molecule flows[J]. Journal of Spacecraft and Rockets, 1971, 8(1):35-40.
    [35] Nomura S. Correlation of hypersonic stagnation point heat transfer at low Reynolds numbers[J]. AIAA Journal, 1983, 21(11):1598-1600.
    [35] Nomura S. Correlation of hypersonic stagnation point heat transfer at low Reynolds numbers[J]. AIAA Journal, 1983, 21(11):1598-1600.
    [36] Hamilton II H H. Approximate method of predicting heating on the windward side of space shuttle orbiter and comparisons with flight data[C]. 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, 1982:823.
    [36] Hamilton II H H. Approximate method of predicting heating on the windward side of space shuttle orbiter and comparisons with flight data[C]. 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, 1982:823.
    [37] 欧阳水吾, 苏玉宏. 高超音速有攻角钝头体三维化学非平衡粘性激波层流动数值计算[J]. 宇航学报, 1992(3):1-12. Ouyang S W, Su Y H. Viscous shock-layer numerical calculations of three dimensional nonequilibrium flows over hypersonic blunt bodies at high angle of attack[J]. Journal of Astronautics, 1992(3):1-12(in Chinese).
    [37] 欧阳水吾, 苏玉宏. 高超音速有攻角钝头体三维化学非平衡粘性激波层流动数值计算[J]. 宇航学报, 1992(3):1-12. Ouyang S W, Su Y H. Viscous shock-layer numerical calculations of three dimensional nonequilibrium flows over hypersonic blunt bodies at high angle of attack[J]. Journal of Astronautics, 1992(3):1-12(in Chinese).
    [38] Lawrence S L, Chaussee D S, Tannehill J C. Application of an upwind algorithm to the three-dimensional parabolized Navier-Stokes equations[C]. 8th Computational Fluid Dynamics Conference, 1987:1112.
    [38] Lawrence S L, Chaussee D S, Tannehill J C. Application of an upwind algorithm to the three-dimensional parabolized Navier-Stokes equations[C]. 8th Computational Fluid Dynamics Conference, 1987:1112.
    [39] Cockre C E Jr, Auslender A H, White J A, et al. Aero- heating predictions for the X-43 hyper-X cowl-closed configuration at Mach 7 and 10[C]. 40th AIAA Aerospace
    [39] Cockre C E Jr, Auslender A H, White J A, et al. Aero- heating predictions for the X-43 hyper-X cowl-closed configuration at Mach 7 and 10[C]. 40th AIAA Aerospace相关性研究[J]. 宇航学报, 2008, 29(6):1706-1710. Gong A L, Zhou W J, Ji C Q, et al. Study on correlation of hypersonic viscous interaction[J]. Journal of Astronautics, 2008, 29(6):1706-1710(in Chinese).
    [59] 周嘉穗, 张扣立, 江涛, 等. 激波风洞温敏热图技术初步试验研究[J]. 实验流体力学, 2013, 27(5):70-82. Zhou J S, Zhang K L, Jiang T, et,al. Preliminary experimental study on temperature sensitive thermography used in shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5):70-82(in Chinese).
    [60] Adams J C, Ireland P T, Cerza M, et al. A detailed experimental investigation of a perforated heat transfer surface applied to gas turbine recuperators[C]. Proceedings of the ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. Atlanta:ASME, 2003.
    [61] Le Sant Y, Marchand M, Millan P, et al. An overview of infrared thermography techniques used in large wind tunnels[J]. Aerospace Science and Technology, 2002, 6(5):355-366.
    [62] Cleary J W. Effects of angle of attack and bluntness on laminar heating-rate distributions of a 15 deg cone at a Mach number of 10.6[R]. NASA TN D-5450, 1969.
    [63] Berry S A, Horvath T J, DiFulvio M, et al. X-34 experimental aeroheating at Mach 6 and 10[J]. Journal of Spacecraft and Rockets, 1999, 36(2):171-178.
    [64] Nonaka S, Mizuno H, Takayama K, et al. Measurement of shock standoff distance for sphere in ballistic range[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(2):225-229.
    [65] Bushnell D M. Scaling:wind tunnel to flight[J]. Annual Review of Fluid Mechanics, 2006, 38:111-128.
    [66] Liu J, Wang M, Li S. The rapid data-driven prediction method of coupled fluid-thermal-structure for hypersonic vehicles[J]. Aerospace, 2021, 8(9):265.
    [67] Drouet V, Prévereaud Y, Moschetta J M, et al. Reduced order models for heat flux and pressure distributions on space debris afterbodies[J]. Acta Astronautica, 2021, 181:446-460.
    [68] 晏筱璇, 韩景龙, 马瑞群. 高超声速气动热弹性分析降阶研究[J]. 振动工程学报, 2022, 35(2):475-486. Yan X X, Han J L, Ma R Q. Reduced-order modeling research for hypersonic aerothermoelastic analysis[J]. Journal of Vibration Engineering, 2022, 35(2):475-486(in Chinese).
    [69] 陈鑫, 刘莉, 岳振江. 基于本征正交分解和代理模型的高超声速气动热模型降阶研究[J]. 航空学报, 2015, 36(2):462-472. Chen X, Liu L, Yue Z J. Reduced order aerothermody- namic modeling research for hypersonic vehicles based on proper orthogonal decomposition and surrogate method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):462-472(in Chinese).
    [70] Chen X, Liu L, Long T, et al. A reduced order aerother- modynamic modeling framework for hypersonic vehicles based on surrogate and POD[J]. Chinese Journal of Aeronautics, 2015, 28(5):1328-1342.
    [71] Chen X, Liu L, Zhou S D, et al. Adding-point strategy for reduced-order hypersonic aerothermodynamics modeling based on fuzzy clustering[J]. Chinese Journal of Mechanical Engineering, 2016, 29(5):983-991.
    [72] 聂春生, 黄建栋, 王迅, 等. 基于POD方法的复杂外形飞行器热环境快速预测方法[J]. 空气动力学学报, 2017, 35(6):760-765. Nie C S, Huang J D, Wang X, et al. Fast aeroheating prediction method for complex shape vehicles based on proper orthogonal decomposition[J]. Acta Aerodynamica Sinica, 2017, 35(6):760-765(in Chinese).
    [73] McNamara J J, Culler A J, Crowell A R. Aerother- moelastic modeling considerations for hypersonic vehicles[R]. AIAA 2009-7397, 2009.
    [74] 王洋, 袁军娅, 王洪兴. 基于代理模型和线性近似的快速气动热边界求解方法[J]. 导弹与航天运载技术, 2018(4):11-17. Wang Y, Yuan J Y, Wang H X. Fast method to determine thermal boundary based on surrogate model and linear approximation[J]. Missiles And Space Vehicles, 2018(4):11-17(in Chinese).
    [75] Falkiewicz N J, Cesnik C E, Crowell A R, et al. Reduced-order aerothermoelastic framework for hypersonic vehicle control simulation[J]. AIAA Journal, 2011, 49(8):1625-1646.
    [76] Huang D N, Friedmann P P. An aerothermoelastic analysis framework with reduced-order modeling applied to composite panels in hypersonic flows[J]. Journal of Fluids and Structures, 2020, 94:102927.
    [77] McNamara J J. Aeroelastic and aerothermoelastic behavior of two and three dimensional lifting surfaces in hypersonic flow[D]. Ann Arbor:University of Michigan, 2005.
    [78] McNamara J J, Friedmann P P, Powell K G, et al. Aeroelastic and aerothermoelastic behavior in hypersonic flow[J]. AIAA Journal, 2008, 46(10):2591-2610.
    [79] Leonard C P, Amundsen R M, Bruce III W E. Hyper-X hot structures design and comparison with flight data[R]. AIAA 2005-3438, 2005.
    [80] Crowell A R, Miller B A, McNamara J J. Robust and efficient treatment of temperature feedback in fluid-thermal- structural analysis[J]. AIAA Journal, 2014, 52(11):2395-2413.
    [81] Dreyer E R, Grier B J, Mcnamara J J, et al. Rapid steady-state hypersonic aerothermodynamic loads prediction using reduced fidelity models[J]. Journal of Aircraft, 2021, 58(3):663-676.
    [82] 杨国涛, 岳振江, 刘莉. 基于自适应采样的高超声速飞行器气动热全局快速预示[J]. 航空学报, 2023, 44(6):127391. Yang G T, Yue Z J, Liu L. Rapid prediction of global hypersonic vehicle aerothermodynamics based on adaptive sampling[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6):127391(in Chinese).
    [83] 张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报, 2021, 42(4):297-306. Zhang Z C, Gao T Y, Zhang L, et al. Aeroheating agent model based on radial basis function neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):297-306(in Chinese).
    [84] Santos M J, Hosder S, West T K. Multifidelity turbulent heating prediction of hypersonic inflatable aerodynamic decelerators with surface scalloping[J]. Journal of Space- craft and Rockets, 2021, 58(5):1325-1338.
    [85] Santos M J, Hosder S, West T K. Multifidelity modeling for efficient aerothermal prediction of deployable entry vehicles[J]. Journal of Spacecraft and Rockets, 2021, 58(1):110-123.
    [86] Sun X W, Huang W, Guo Z Y, et al. Multiobjective design optimization of hypersonic combinational novel cavity and opposing jet concept[J]. Journal of Spacecraft and Rockets, 2017, 54(3):662-671.
    [87] Guo J H, Lin G P, Bu X Q, et al. Parametric study on the heat transfer of a blunt body with counterflowing jets in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 121:84-96.
    [88] Ou M, Yan L, Huang W, et al. Design exploration of combinational spike and opposing jet concept in hypersonic flows based on CFD calculation and surrogate model[J]. Acta Astronautica, 2019, 155:287-301.
    [89] Huang D N, Sadagopan A, Düzel ü, et al. Study of fluid- thermal-structural interaction in high-temperature high- speed flow using multi-fidelity multi-variate surrogates[J]. Journal of Fluids and Structures, 2022, 113:103682.
    [90] Ding D M, Chen H, Ma Z, et al. Heat flux estimation of the cylinder in hypersonic rarefied flow based on neural network surrogate model[J]. AIP Advances, 2022, 12(8):085314.
    [91] 李素循. 典型外形高超声速流动特性[M]. 北京:国防工业出版社, 2007. Li S X. Typical profile hypersonic flow characteristics[M]. Beijing:National Defense Industry Press, 2007(in Chinese).
    [92] Venegas C A V, Huang D N. Expedient hypersonic aero- thermal prediction for aerothermoelastic analysis via field inversion and machine learning[R]. AIAA 2021-1707, 2021.
    [93] 王泽, 王梓伊, 王旭, 等. 一种数据驱动的气动热预示模型[J]. 空气动力学学报, 2023, 41(5):12-19. Wang Z, Wang Z Y, Wang X, et al. A data-driven aero- heating prediction model[J]. Acta Aerodynamica Sinica, 2023, 41(5):12-19(in Chinese).
    [94] Brouwer K R, Mcnamara J J. Generalized treatment of surface deformation for high-speed computational fluid dy- namic surrogates[J]. AIAA Journal, 2020, 58(1):329- 340.
    [95] 杨帆, 林明月, 胡宗民, 等. 基于机器学习的高速飞行器双曲率前缘气动热预测方法[J/OL]. 北京航空航天大学学报, 2023.[2023-06-22]. https://doi.org/10.13700/j.bh.1001-5965.2022.0746. Yang F, Lin M Y, Hu Z M, et al. Fast prediction method of aero-heating of bi-curvature leading edge based on the machine learning[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2023[2023-06- 22]. https://doi.org/10.13700/j.bh.1001-5965.2022.0746(in Chinese).
    [96] Ren H J, Wang S, Yuan X X, et al. A flight test based deep learning method for transition heat flux prediction in hypersonic flow[J]. Physics of Fluids, 2022, 34(5):054106.
    [97] Zangeneh R. Data-driven model for improving wall- modeled large-eddy simulation of supersonic turbulent flows with separation[J]. Physics of Fluids, 2021, 33(12):126103.
    [98] Li T, Guo L, Yang Z G, et al. An automatic shape-aware method for predicting heat flux of supersonic aircraft based on a deep learning approach[J]. Physics of Fluids, 2022, 34(7):077103.
    [99] 王梓伊, 张伟伟, 刘磊. 高超声速飞行器热气动弹性仿真计算方法综述[J]. 气体物理, 2020, 5(6):1-15. Wang Z Y, Zhang W W, Liu L. Review of simulation methods of hypersonic aerothermoelastic problems[J]. Physics of Gases, 2020, 5(6):1-15(in Chinese).
    [100] 张伟伟, 王旭, 寇家庆. 面向流体力学的多范式融合研究展望[J]. 力学进展, 2023, 53(2):433-467. Zhang W W, Wang X, Kou J Q. Prospects of multi-paradigm fusion methods for fluid mechanics research[J]. Advances in Mechanics, 2023, 53(2):433-467(in Chinese).
  • 加载中
计量
  • 文章访问数:  40
  • HTML全文浏览量:  5
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-23
  • 修回日期:  2023-08-16
  • 网络出版日期:  2024-03-13

目录

    /

    返回文章
    返回