Unsteady Flow Driven by the Counter-Flow Jets of High-Altitude Engine Based on DSMC Simulation
-
摘要: 逆向发动机常用于对飞行器进行减速或分离。为研究高空稀薄条件下逆向发动机喷流和自由来流的相互作用, 构建了由两个逆向喷流和高超声速自由来流相互干扰形成的稀薄流场。通过直接模拟Monte Carlo (direct simulation Monte Carlo, DSMC)仿真发现在稀薄来流条件下会形成大面积相互干扰区, 且该干扰区存在严重非定常流动现象。初步分析认为, 该干扰区的范围和非定常演化过程与自由来流动能和逆向发动机喷流流量紧密相关。
-
关键词:
- 稀薄非定常现象 /
- 逆向喷流 /
- 高空 /
- 直接模拟Monte Carlo方法 /
- 大范围干扰区
Abstract: Counter-flow engines are often used for aircraft slowing or separating. In order to study the interaction between the counter-flow jets and free stream at high altitudes, the rarefied flow driven by two counter-flow jets and hypersonic free stream was constructed. By the direct simulation Monte Carlo (DSMC) method, it is found that a large area of mutual interference will be formed under the condition of rarefied free stream, and there are serious unsteady flow phenomena in the interference area. According to preliminary analysis, the range and unsteady evolution of the interference area are closely related to the kinetic energy of free stream and the flow rate of counter-flow jets. -
表 1 出口平面的喷流气体组分及其摩尔分数
Table 1. Gas components of the jets on the exit plane and their mole fractions
gas component mole fraction/(%) CO 1.86 CO2 15.32 H2 27.59 H2O 23.95 N2 31.29 -
[1] Kim M S, Pierce S J, Brink K M. Celestial aided inertial navigation by tracking high altitude vehicles[C]. Proceedings of the 2017 International Technical Meeting of the Institute of Navigation. Monterey, California: ION, 2017. [2] Young J A, Sedwick R J, Dumpala S, et al. High energy plume impingement on spacecraft systems[R]. AIAA 2014-1032, 2014. [3] Cichocki F, Merino M, Ahedo E. Modeling and simulation of EP plasma plume expansion into vacuum[R]. AIAA 2014-3828, 2014. [4] Book C F, Walker M L. Effect of anode temperature on hall thruster performance[J]. Journal of Propulsion and Power, 2010, 26(5): 1036-1044. doi: 10.2514/1.48028 [5] Gimelshein S F, Levin D A, Alexeenko A A. Modeling of chemically reacting flows from a side jet at high altitudes[J]. Journal of Spacecraft and Rockets, 2004, 41(4): 582-591. doi: 10.2514/1.2028 [6] Xu M, Chen G, Chen Z M, et al. Numerical simulation of 3-D unsteady jet-interaction phenomenology[R]. AIAA 2004-5061, 2004. [7] Li W H, Ladeinde F. Analysis of interacting, underexpanded, rarefied jets[J]. AIAA Journal, 2011, 49(11): 2581-2585. doi: 10.2514/1.J050860 [8] Yu W, Chou K L, Polansky J L, et al. Experimental investigations of plasma plume potential in a vacuum chamber[R]. AIAA 2013-4130, 2013. [9] Yim J T, Sibé F, Ierardo N. Plume impingement analysis for the European service module propulsion system[R]. AIAA 2014-3883, 2014. [10] Li Z H, Li Z H, Wu J L, et al. Coupled Navier-Stokes/direct simulation Monte Carlo simulation of multicomponent mixture plume flows[J]. Journal of Propulsion and Power, 2014, 30(3): 672-689. doi: 10.2514/1.B34971 [11] Cai C P, Wang L. Gas kinetic analytical and numerical studies on rarefied unsteady planar jet flows[J]. Physica Scripta, 2013, 88(4): 045501. doi: 10.1088/0031-8949/88/04/045501 [12] Cai C, Sun Q, Vanderwyst A. Analytical exact solutions for unsteady collisionless plume flows in a vacuum[J]. Acta Astronautica, 2013, 91: 218-227. doi: 10.1016/j.actaastro.2013.06.019 [13] Cai C P, Huang X H. High-speed rarefied round jet and jet impingement flows[J]. AIAA Journal, 2012, 50(12): 2908-2918. doi: 10.2514/1.J051785 [14] Cai C P, Zou C. Gas kinetic solutions for high Knudsen number planar jet impingement flows[J]. Communications in Computational Physics, 2013, 14(4): 960-978. doi: 10.4208/cicp.040812.281112a [15] Cai C P. Free molecular gas flows over a flat plate[J]. AIP Conference Proceedings, 2014, 1628(1): 1300-1309. [16] Pradhan S. Thin film deposition using rarefied gas jet[R]. AIAA 2017-2331, 2017. [17] Yaskin A S, Kalyada V V, Zarvin A E, et al. A high-efficiency method for scanning supersonic jets of rarefied gases[J]. Instruments and Experimental Techniques, 2020, 63(3): 430-434. doi: 10.1134/S0020441220030185 [18] Huang W. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J]. Journal of Zhejiang University-Science A, 2015, 16(7): 551-561. doi: 10.1631/jzus.A1500021 [19] Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. New York: Oxford University Press, 1994. [20] Boyd I D, Schwartzentruber T E. Nonequilibrium gas dynamics and molecular simulation[M]. Cambridge: Cambridge University Press, 2017. [21] Vijayakumar P, Sun Q H, Boyd I D. Vibrational-translational energy exchange models for the direct simulation Monte Carlo method[J]. Physics of Fluids, 1999, 11(8): 2117-2126. doi: 10.1063/1.870074 [22] Boyd I D. Analysis of rotational nonequilibrium in standing shock waves of nitrogen[J]. AIAA Journal, 1990, 28(11): 1997-1999. doi: 10.2514/3.10511 [23] Li Z H, Chen A G, Bi L. Numerical and experimental study of small thruster nozzle plume[C]. 8th Sino-Russia High-speed Flow Conference, 2011: 267-274. [24] 李中华, 李志辉, 陈爱国, 等. 低密度风洞瑞利散射测速实验中纳米粒子跟随性数值分析[J]. 力学学报, 2017, 49(6): 1243-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706006.htmLi Z H, Li Z H, Chen A G, et al. Numerical analyzition of nano-particle following features for Rayleigh scattering velocity measurement test in low density wind tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1243-1251(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706006.htm [25] Hadjiconstantinou N G, Garcia A L, Bazant M Z, et al. Statistical error in particle simulations of hydrodynamic phenomena[J]. Journal of Computational Physics, 2003, 187(1): 274-297. doi: 10.1016/S0021-9991(03)00099-8 -