主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空发动机逆向喷流诱导的非定常流动DSMC仿真

吴俊林 李中华 彭傲平 李埌全 梁杰

吴俊林, 李中华, 彭傲平, 李埌全, 梁杰. 高空发动机逆向喷流诱导的非定常流动DSMC仿真[J]. 气体物理, 2023, 8(5): 38-45. doi: 10.19527/j.cnki.2096-1642.1059
引用本文: 吴俊林, 李中华, 彭傲平, 李埌全, 梁杰. 高空发动机逆向喷流诱导的非定常流动DSMC仿真[J]. 气体物理, 2023, 8(5): 38-45. doi: 10.19527/j.cnki.2096-1642.1059
WU Jun-lin, LI Zhong-hua, PENG Ao-ping, LI Lang-quan, LIANG Jie. Unsteady Flow Driven by the Counter-Flow Jets of High-Altitude Engine Based on DSMC Simulation[J]. PHYSICS OF GASES, 2023, 8(5): 38-45. doi: 10.19527/j.cnki.2096-1642.1059
Citation: WU Jun-lin, LI Zhong-hua, PENG Ao-ping, LI Lang-quan, LIANG Jie. Unsteady Flow Driven by the Counter-Flow Jets of High-Altitude Engine Based on DSMC Simulation[J]. PHYSICS OF GASES, 2023, 8(5): 38-45. doi: 10.19527/j.cnki.2096-1642.1059

高空发动机逆向喷流诱导的非定常流动DSMC仿真

doi: 10.19527/j.cnki.2096-1642.1059
基金项目: 

国家自然科学基金 11902339

详细信息
    作者简介:

    吴俊林(1985-)男, 博士, 主要研究方向为稀薄气体动力学。E-mail: wujunlin130@aliyun.com

  • 中图分类号: O355;O356

Unsteady Flow Driven by the Counter-Flow Jets of High-Altitude Engine Based on DSMC Simulation

  • 摘要: 逆向发动机常用于对飞行器进行减速或分离。为研究高空稀薄条件下逆向发动机喷流和自由来流的相互作用, 构建了由两个逆向喷流和高超声速自由来流相互干扰形成的稀薄流场。通过直接模拟Monte Carlo (direct simulation Monte Carlo, DSMC)仿真发现在稀薄来流条件下会形成大面积相互干扰区, 且该干扰区存在严重非定常流动现象。初步分析认为, 该干扰区的范围和非定常演化过程与自由来流动能和逆向发动机喷流流量紧密相关。

     

  • 图  1  DSMC采用的静态负载平衡分配方案示意图

    Figure  1.  Schematic diagram of static load balancing distribution scheme adopted in DSMC

    图  2  姿控发动机喷流膨胀进入低密度环境的数值结果对比

    Figure  2.  Numerical result comparison of jet expansion into low density environments for attitude control engines

    图  3  低密度风洞中辉光放电技术的实验结果

    Figure  3.  Experimental results in low density wind tunnel by glow discharge technology

    图  4  喷流膨胀流动中沿中心线的Pitot压力比较

    Figure  4.  Comparison of the Pitot pressure along the central axis in the jet expansion flow

    图  5  飞行器的结构和尺寸

    Figure  5.  Composition and size of the vehicle

    图  6  出口平面沿径向的密度和温度分布

    Figure  6.  Distributions of density and temperature along the radial direction of the exit plane

    图  7  出口平面沿径向的法向、径向速度分布

    Figure  7.  Distributions of normal velocity and radial velocity along the radial direction of the exit plane

    图  8  对称平面z=0内不同瞬时的压力云图

    Figure  8.  Pressure contours at different transient moments in the symmetry plane z=0

    图  9  计算过程中飞行器前体和后体的轴向力变化趋势

    Figure  9.  Variation trends of axial forces of head-body and back-body of the vehicle during numerical computation

    图  10  计算过程中飞行器前体和后体的法向力变化趋势

    Figure  10.  Variation trends of normal forces of head-body and back-body of the vehicle during numerical computation

    图  11  计算过程中飞行器前体和后体的俯仰力矩变化趋势

    Figure  11.  Variation trends of pitching moments of head-body and back-body of the vehicle during numerical computation

    图  12  不同瞬时飞行器表面的压力分布

    Figure  12.  Pressure distributions on the surface of the vehicle at different transient moments

    表  1  出口平面的喷流气体组分及其摩尔分数

    Table  1.   Gas components of the jets on the exit plane and their mole fractions

    gas component mole fraction/(%)
    CO 1.86
    CO2 15.32
    H2 27.59
    H2O 23.95
    N2 31.29
    下载: 导出CSV
  • [1] Kim M S, Pierce S J, Brink K M. Celestial aided inertial navigation by tracking high altitude vehicles[C]. Proceedings of the 2017 International Technical Meeting of the Institute of Navigation. Monterey, California: ION, 2017.
    [2] Young J A, Sedwick R J, Dumpala S, et al. High energy plume impingement on spacecraft systems[R]. AIAA 2014-1032, 2014.
    [3] Cichocki F, Merino M, Ahedo E. Modeling and simulation of EP plasma plume expansion into vacuum[R]. AIAA 2014-3828, 2014.
    [4] Book C F, Walker M L. Effect of anode temperature on hall thruster performance[J]. Journal of Propulsion and Power, 2010, 26(5): 1036-1044. doi: 10.2514/1.48028
    [5] Gimelshein S F, Levin D A, Alexeenko A A. Modeling of chemically reacting flows from a side jet at high altitudes[J]. Journal of Spacecraft and Rockets, 2004, 41(4): 582-591. doi: 10.2514/1.2028
    [6] Xu M, Chen G, Chen Z M, et al. Numerical simulation of 3-D unsteady jet-interaction phenomenology[R]. AIAA 2004-5061, 2004.
    [7] Li W H, Ladeinde F. Analysis of interacting, underexpanded, rarefied jets[J]. AIAA Journal, 2011, 49(11): 2581-2585. doi: 10.2514/1.J050860
    [8] Yu W, Chou K L, Polansky J L, et al. Experimental investigations of plasma plume potential in a vacuum chamber[R]. AIAA 2013-4130, 2013.
    [9] Yim J T, Sibé F, Ierardo N. Plume impingement analysis for the European service module propulsion system[R]. AIAA 2014-3883, 2014.
    [10] Li Z H, Li Z H, Wu J L, et al. Coupled Navier-Stokes/direct simulation Monte Carlo simulation of multicomponent mixture plume flows[J]. Journal of Propulsion and Power, 2014, 30(3): 672-689. doi: 10.2514/1.B34971
    [11] Cai C P, Wang L. Gas kinetic analytical and numerical studies on rarefied unsteady planar jet flows[J]. Physica Scripta, 2013, 88(4): 045501. doi: 10.1088/0031-8949/88/04/045501
    [12] Cai C, Sun Q, Vanderwyst A. Analytical exact solutions for unsteady collisionless plume flows in a vacuum[J]. Acta Astronautica, 2013, 91: 218-227. doi: 10.1016/j.actaastro.2013.06.019
    [13] Cai C P, Huang X H. High-speed rarefied round jet and jet impingement flows[J]. AIAA Journal, 2012, 50(12): 2908-2918. doi: 10.2514/1.J051785
    [14] Cai C P, Zou C. Gas kinetic solutions for high Knudsen number planar jet impingement flows[J]. Communications in Computational Physics, 2013, 14(4): 960-978. doi: 10.4208/cicp.040812.281112a
    [15] Cai C P. Free molecular gas flows over a flat plate[J]. AIP Conference Proceedings, 2014, 1628(1): 1300-1309.
    [16] Pradhan S. Thin film deposition using rarefied gas jet[R]. AIAA 2017-2331, 2017.
    [17] Yaskin A S, Kalyada V V, Zarvin A E, et al. A high-efficiency method for scanning supersonic jets of rarefied gases[J]. Instruments and Experimental Techniques, 2020, 63(3): 430-434. doi: 10.1134/S0020441220030185
    [18] Huang W. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J]. Journal of Zhejiang University-Science A, 2015, 16(7): 551-561. doi: 10.1631/jzus.A1500021
    [19] Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. New York: Oxford University Press, 1994.
    [20] Boyd I D, Schwartzentruber T E. Nonequilibrium gas dynamics and molecular simulation[M]. Cambridge: Cambridge University Press, 2017.
    [21] Vijayakumar P, Sun Q H, Boyd I D. Vibrational-translational energy exchange models for the direct simulation Monte Carlo method[J]. Physics of Fluids, 1999, 11(8): 2117-2126. doi: 10.1063/1.870074
    [22] Boyd I D. Analysis of rotational nonequilibrium in standing shock waves of nitrogen[J]. AIAA Journal, 1990, 28(11): 1997-1999. doi: 10.2514/3.10511
    [23] Li Z H, Chen A G, Bi L. Numerical and experimental study of small thruster nozzle plume[C]. 8th Sino-Russia High-speed Flow Conference, 2011: 267-274.
    [24] 李中华, 李志辉, 陈爱国, 等. 低密度风洞瑞利散射测速实验中纳米粒子跟随性数值分析[J]. 力学学报, 2017, 49(6): 1243-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706006.htm

    Li Z H, Li Z H, Chen A G, et al. Numerical analyzition of nano-particle following features for Rayleigh scattering velocity measurement test in low density wind tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1243-1251(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706006.htm
    [25] Hadjiconstantinou N G, Garcia A L, Bazant M Z, et al. Statistical error in particle simulations of hydrodynamic phenomena[J]. Journal of Computational Physics, 2003, 187(1): 274-297. doi: 10.1016/S0021-9991(03)00099-8
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  8
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-06-03

目录

    /

    返回文章
    返回