主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引气位置对旁路式二元激波矢量喷管性能影响

舒博文 黄江涛 高正红 何成军 夏露

舒博文, 黄江涛, 高正红, 何成军, 夏露. 引气位置对旁路式二元激波矢量喷管性能影响[J]. 气体物理, 2023, 8(5): 19-27. doi: 10.19527/j.cnki.2096-1642.1055
引用本文: 舒博文, 黄江涛, 高正红, 何成军, 夏露. 引气位置对旁路式二元激波矢量喷管性能影响[J]. 气体物理, 2023, 8(5): 19-27. doi: 10.19527/j.cnki.2096-1642.1055
SHU Bo-wen, HUANG Jiang-tao, GAO Zheng-hong, HE Cheng-jun, XIA Lu. Influence of Bypass Location on Two-Dimensional Shock Vectoring Nozzle[J]. PHYSICS OF GASES, 2023, 8(5): 19-27. doi: 10.19527/j.cnki.2096-1642.1055
Citation: SHU Bo-wen, HUANG Jiang-tao, GAO Zheng-hong, HE Cheng-jun, XIA Lu. Influence of Bypass Location on Two-Dimensional Shock Vectoring Nozzle[J]. PHYSICS OF GASES, 2023, 8(5): 19-27. doi: 10.19527/j.cnki.2096-1642.1055

引气位置对旁路式二元激波矢量喷管性能影响

doi: 10.19527/j.cnki.2096-1642.1055
基金项目: 

武器装备预研基金 50906010101

翼型叶栅重点实验室基金 6142201200106

详细信息
    作者简介:

    舒博文(1995-)男, 博士, 主要研究方向为内外流一体化优化设计、流体推力矢量控制。E-mail: shubowen@mail.nwpu.edu.cn

    通讯作者:

    何成军(1989-)男, 博士, 助理研究员, 研究流体推力矢量、进/排气设计。E-mail: hecheng.jun@163.com

  • 中图分类号: V231

Influence of Bypass Location on Two-Dimensional Shock Vectoring Nozzle

  • 摘要: 流体推力矢量技术可为超声速无尾布局提供良好的隐身性能与纵向操纵力矩, 具有响应快、质量小等优势。旁路式激波矢量喷管无须从发动机引气, 克服了为增加矢量角而增加发动机引气流量的问题, 可降低发动机的负担。开展了引气位置对旁路式二元激波矢量喷管矢量性能影响研究, 为加深对此种喷管性能理解以及将其实用化打下基础。结果表明: 喉道引气喷管兼具激波矢量和喉道偏斜法的特征, 入口引气喷管在过膨胀状态下性能更好, 喉道引气喷管在欠膨胀状态下更有优势。射流后的分离模式显著影响喷管矢量性能, 闭式分离使喷管矢量性能下降明显, 喉道引气喷管矢量性能突变对应的落压比小于入口引气喷管。实际应用中, 应避免分离模式由开式分离转为闭式分离, 根据不同膨胀状态搭配不同的旁路式引气方式能够最大化旁路式二元激波矢量喷管性能。

     

  • 图  1  喷管几何参数

    Figure  1.  Geometry of SVC nozzle

    图  2  喷管压力分布计算与实验对比

    Figure  2.  Comparison of pressure distribution between CFD and experiment

    图  3  密度梯度云图与实验对比

    Figure  3.  Comparison of density gradient contour between CFD and experiment

    图  4  旁路式激波矢量喷管几何参数(单位:mm)

    Figure  4.  Geometry of bypass SVC nozzle(unit: mm)

    图  5  旁路式激波矢量喷管设计压比压力分布

    Figure  5.  Pressure distribution of bypass nozzle at NPRD

    图  6  旁路式激波矢量喷管设计压比Mach数云图

    Figure  6.  Mach contour of bypass nozzle at NPRD

    图  7  旁路式激波矢量喷管矢量性能对比

    Figure  7.  Comparison of vector performance of bypass SVC nozzle

    图  8  不同NPR下旁路式SVC喷管压力分布

    Figure  8.  Pressure distribution of bypass SVC nozzle at different NPR

    图  9  不同压比下喉道引气激波矢量喷管Mach数云图

    Figure  9.  Mach contour of throat bypass SVC nozzle at different NPR

    图  10  不同压比下入口引气激波矢量喷管Mach数云图

    Figure  10.  Mach contour of inlet bypass SVC nozzle at different NPR

    表  1  不同压比旁路SVC喷管矢量性能

    Table  1.   Vector performance of bypass SVC nozzle at different NPR

    NPR throat bypass inlet bypass
    δp cfg δp cfg
    4 7.761° 0.956 10.550° 0.960
    5 7.390° 0.966 9.555° 0.967
    6 4.954° 0.960 8.151° 0.968
    7 4.948° 0.965 6.756° 0.965
    8 4.870° 0.968 5.147° 0.959
    8.78 4.800° 0.969 5.059° 0.959
    10 4.700° 0.968 4.963° 0.958
    11 4.635° 0.967 4.905° 0.957
    12 4.580° 0.966 4.861° 0.955
    下载: 导出CSV
  • [1] 富佳伟, 张震宇. 高隐身超声速无尾布局飞机设计[J]. 飞机设计, 2018, 38(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ201805001.htm

    Fu J W, Zhang Z Y. Research on design of the high stealthy supersonic tailless aircraft[J]. Aircraft Design, 2018, 38(5): 1-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ201805001.htm
    [2] Jegede O. Dual-axis fluidic thrust vectoring of high-aspect ratio supersonic jets[D]. Manchester: University of Manchester, 2016.
    [3] 程荣辉, 张志舒, 陈仲光. 第四代战斗机动力技术特征和实现途径[J]. 航空学报, 2019, 40(3): 22698. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201903024.htm

    Cheng R H, Zhang Z S, Chen Z G. Technical characte-ristics and implementation of the fourth-generation jet fighter engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 22698(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201903024.htm
    [4] Francis M S. Air vehicle management with integrated thrust-vector control[J]. AIAA Journal, 2018, 56(12): 4741-4751. doi: 10.2514/1.J056768
    [5] 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020, 41(6): 524057. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202006003.htm

    Wang H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524057(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202006003.htm
    [6] Kowal H J. Advances in thrust vectoring and the application of flow-control technology[J]. Canadian Aeronautics and Space Journal, 2002, 48(2): 145-151. doi: 10.5589/q02-020
    [7] 舒博文, 黄江涛, 高正红, 等. 二元激波矢量喷管矢量性能敏感性分析[J]. 航空学报, 2023, 44(4): 127831. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202313003.htm

    Shu B W, Huang J T, Gao Z H, et al. Sensitivity analysis of vector performance of two-dimensional shock vector control nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 127831(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202313003.htm
    [8] Deere K A. Summary of fluidic thrust vectoring research conducted at NASA Langley research center[R]. AIAA 2003-3800, 2003.
    [9] Hanumanthrao K, Ragothaman S, Kumar B A, et al. Studies on fluidic injection thrust vectoring in aerospike nozzles[R]. AIAA 2011-293, 2011.
    [10] 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201704002.htm

    Xiao Z Y, Jiang X, Mou B, et al. Advances in fluidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201704002.htm
    [11] 瞿丽霞, 李岩, 白香君. 流体推力矢量技术的应用验证研究进展[J]. 航空科学技术, 2020, 31(5): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005010.htm

    Qu L X, Li Y, Bai X J. Application verification research progress on fluid thrust vectoring technology[J]. Aeronautical Science & Technology, 2020, 31(5): 64-72(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005010.htm
    [12] 曹永飞, 顾蕴松, 韩杰星. 流体推力矢量技术验证机研制及飞行试验研究[J]. 空气动力学学报, 2019, 37(4): 593-599. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201904011.htm

    Cao Y F, Gu Y S, Han J X. Development and flight testing of a fluidic thrust vectoring demonstrator[J]. Acta Aerodynamica Sinica, 2019, 37(4): 593-599(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201904011.htm
    [13] 龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 123609. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202010007.htm

    Gong D S, Gu Y S, Zhou Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123609(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202010007.htm
    [14] 林泳辰. 新型流体矢量喷管的应用研究[D]. 南京: 南京航空航天大学, 2019.

    Lin Y C. An application research on the new fluidic thrust vector nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
    [15] Warsop C, Crowther W J, Shearwood T. NATO AVT-239: flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[R]. AIAA 2019-0282, 2019.
    [16] Mason M, Crowther W. Fluidic thrust vectoring for low observable air vehicle[R]. AIAA 2004-2210, 2004.
    [17] Heo J Y, Sung H G. Fluidic thrust-vector control of supersonic jet using coflow injection[J]. Journal of Propulsion and Power, 2012, 28(4): 858-861.
    [18] Wang Y S, Xu J L, Huang S, et al. Computational study of axisymmetric divergent bypass dual throat nozzle[J]. Aerospace Science and Technology, 2019, 86: 177-190.
    [19] Deere K A, Berrier B L, Flamm J D, et al. A computational study of a new dual throat fluidic thrust vectoring nozzle concept[R]. AIAA 2005-3502, 2005.
    [20] Maruyama Y, Sakata M, Takahashi Y. Performance analyses of fluidic thrust vector control system using dual throat nozzle[J]. AIAA Journal, 2022, 60(3): 1730-1744.
    [21] Shi N X, Gu Y S, Zhou Y H, et al. Mechanism of hysteresis and uncontrolled deflection in jet vectoring control based on Coanda effect[J]. Physics of Fluids, 2022, 34(8): 084107.
    [22] 史经纬. 固定几何气动矢量喷管流动机理及性能评估技术研究[D]. 西安: 西北工业大学, 2015.

    Shi J W. Investigation on flow mechanism and performance estimation of fixed-geometric thrust vectoring nozzle[D]. Xi'an: Northwestern Polytechnical University, 2015(in Chinese).
    [23] Walker S H. Lessons learned in the development of a national cooperative program[R]. AIAA 1997-3348, 1997.
    [24] Deere K. Computational investigation of the aerodynamic effects on fluidic thrust vectoring[R]. AIAA 2000-3598, 2000.
    [25] Waithe K A, Deere K A. Experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring[R]. AIAA 2003-3802, 2003.
    [26] Zigunov F, Song M J, Sellappan P, et al. Multiaxis shock vectoring control of over expanded supersonic jet using a genetic algorithm[J]. Journal of Propulsion and Power, 2023, 39(2): 249-257.
    [27] Younes K, Hickey J P. Fluidic thrust shock-vectoring control: a sensitivity analysis[J]. AIAA Journal, 2020, 58(4): 1887-1890.
    [28] Emelyanov V, Yakovchuk M, Volkov K. Multiparameter optimization of thrust vector control with transverse injection of a supersonic under expanded gas jet into a convergent divergent nozzle[J]. Energies, 2021, 14(14): 4359.
    [29] 史经纬, 王占学, 周莉, 等. 激波矢量喷管二次流喷口形态影响研究[J]. 工程热物理学报, 2014, 35(11): 2173-2177. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201411014.htm

    Shi J W, Wang Z X, Zhou L, et al. Influence of secondary injection configuration on performance of shock vector nozzle[J]. Journal of Engineering Thermophysics, 2014, 35(11): 2173-2177(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201411014.htm
    [30] 王晓明, 刘辉, 韩龙柱, 等. 激波诱导推力矢量喷管不同气体喷注时的性能分析[J]. 北京航空航天大学学报, 2018, 44(11): 2267-2272. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201811003.htm

    Wang X M, Liu H, Han L Z, et al. Performance analysis of shock thrust vector nozzle under different gas injections[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2267-2272(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201811003.htm
    [31] 张晓博, 王占学, 刘增文. 气动矢量喷管二次流对发动机性能的影响[J]. 推进技术, 2013, 34(1): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201301004.htm

    Zhang X B, Wang Z X, Liu Z W. Influence of secondary flow in fluidic thrust vector nozzle on aero-engine performance[J]. Journal of Propulsion Technology, 2013, 34(1): 3-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201301004.htm
    [32] Gu R, Xu J L, Guo S. Experimental and numerical investigations of a bypass dual throat nozzle[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(8): 084501.
    [33] Deng R Y, Setoguchi T, Kim H D. Large eddy simulation of shock vector control using bypass flow passage[J]. International Journal of Heat and Fluid Flow, 2016, 62: 474-481.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  5
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-06-15

目录

    /

    返回文章
    返回