Influence of Bypass Location on Two-Dimensional Shock Vectoring Nozzle
-
摘要: 流体推力矢量技术可为超声速无尾布局提供良好的隐身性能与纵向操纵力矩, 具有响应快、质量小等优势。旁路式激波矢量喷管无须从发动机引气, 克服了为增加矢量角而增加发动机引气流量的问题, 可降低发动机的负担。开展了引气位置对旁路式二元激波矢量喷管矢量性能影响研究, 为加深对此种喷管性能理解以及将其实用化打下基础。结果表明: 喉道引气喷管兼具激波矢量和喉道偏斜法的特征, 入口引气喷管在过膨胀状态下性能更好, 喉道引气喷管在欠膨胀状态下更有优势。射流后的分离模式显著影响喷管矢量性能, 闭式分离使喷管矢量性能下降明显, 喉道引气喷管矢量性能突变对应的落压比小于入口引气喷管。实际应用中, 应避免分离模式由开式分离转为闭式分离, 根据不同膨胀状态搭配不同的旁路式引气方式能够最大化旁路式二元激波矢量喷管性能。Abstract: Fluidic thrust vectoring technology can provide good stealth performance and longitudinal maneuvering moment for supersonic tailless configurations, with advantages of fast response and light weight. The bypass shock vectoring nozzle does not need to draw air from the engine, which overcomes the problem of increasing the engine flow to increase the vector angle and reduces the burden on the engine. A study of the effect of bypass position on the performance of two-dimensional shock vectoring nozzle was conducted to lay the foundation for a better understanding of the performance of this nozzle and its practical applications. The results show that the throat bypass jet has the characteristics of both the shock vector and the throat skewing method, and that the inlet bypass jet performs better in the over-expanded condition, while the throat bypass jet has more advantages in the under-expanded condition. The separation mode after the jet significantly affects the nozzle vector performance. Closed separation makes the nozzle vector performance decrease significantly, and the nozzle pressure ratio related to the sudden change in vector performance of the throat bypass nozzle is smaller than that of the inlet bypass nozzle. In practice, it should be avoided to switch the separation mode from open separation to closed separation. Matching different bypass modes according to different expansion states can maximize the bypass shock vectoring nozzle performance.
-
表 1 不同压比旁路SVC喷管矢量性能
Table 1. Vector performance of bypass SVC nozzle at different NPR
NPR throat bypass inlet bypass δp cfg δp cfg 4 7.761° 0.956 10.550° 0.960 5 7.390° 0.966 9.555° 0.967 6 4.954° 0.960 8.151° 0.968 7 4.948° 0.965 6.756° 0.965 8 4.870° 0.968 5.147° 0.959 8.78 4.800° 0.969 5.059° 0.959 10 4.700° 0.968 4.963° 0.958 11 4.635° 0.967 4.905° 0.957 12 4.580° 0.966 4.861° 0.955 -
[1] 富佳伟, 张震宇. 高隐身超声速无尾布局飞机设计[J]. 飞机设计, 2018, 38(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ201805001.htmFu J W, Zhang Z Y. Research on design of the high stealthy supersonic tailless aircraft[J]. Aircraft Design, 2018, 38(5): 1-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ201805001.htm [2] Jegede O. Dual-axis fluidic thrust vectoring of high-aspect ratio supersonic jets[D]. Manchester: University of Manchester, 2016. [3] 程荣辉, 张志舒, 陈仲光. 第四代战斗机动力技术特征和实现途径[J]. 航空学报, 2019, 40(3): 22698. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201903024.htmCheng R H, Zhang Z S, Chen Z G. Technical characte-ristics and implementation of the fourth-generation jet fighter engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 22698(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201903024.htm [4] Francis M S. Air vehicle management with integrated thrust-vector control[J]. AIAA Journal, 2018, 56(12): 4741-4751. doi: 10.2514/1.J056768 [5] 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020, 41(6): 524057. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202006003.htmWang H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524057(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202006003.htm [6] Kowal H J. Advances in thrust vectoring and the application of flow-control technology[J]. Canadian Aeronautics and Space Journal, 2002, 48(2): 145-151. doi: 10.5589/q02-020 [7] 舒博文, 黄江涛, 高正红, 等. 二元激波矢量喷管矢量性能敏感性分析[J]. 航空学报, 2023, 44(4): 127831. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202313003.htmShu B W, Huang J T, Gao Z H, et al. Sensitivity analysis of vector performance of two-dimensional shock vector control nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 127831(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202313003.htm [8] Deere K A. Summary of fluidic thrust vectoring research conducted at NASA Langley research center[R]. AIAA 2003-3800, 2003. [9] Hanumanthrao K, Ragothaman S, Kumar B A, et al. Studies on fluidic injection thrust vectoring in aerospike nozzles[R]. AIAA 2011-293, 2011. [10] 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201704002.htmXiao Z Y, Jiang X, Mou B, et al. Advances in fluidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201704002.htm [11] 瞿丽霞, 李岩, 白香君. 流体推力矢量技术的应用验证研究进展[J]. 航空科学技术, 2020, 31(5): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005010.htmQu L X, Li Y, Bai X J. Application verification research progress on fluid thrust vectoring technology[J]. Aeronautical Science & Technology, 2020, 31(5): 64-72(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005010.htm [12] 曹永飞, 顾蕴松, 韩杰星. 流体推力矢量技术验证机研制及飞行试验研究[J]. 空气动力学学报, 2019, 37(4): 593-599. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201904011.htmCao Y F, Gu Y S, Han J X. Development and flight testing of a fluidic thrust vectoring demonstrator[J]. Acta Aerodynamica Sinica, 2019, 37(4): 593-599(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201904011.htm [13] 龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 123609. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202010007.htmGong D S, Gu Y S, Zhou Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123609(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202010007.htm [14] 林泳辰. 新型流体矢量喷管的应用研究[D]. 南京: 南京航空航天大学, 2019.Lin Y C. An application research on the new fluidic thrust vector nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese). [15] Warsop C, Crowther W J, Shearwood T. NATO AVT-239: flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[R]. AIAA 2019-0282, 2019. [16] Mason M, Crowther W. Fluidic thrust vectoring for low observable air vehicle[R]. AIAA 2004-2210, 2004. [17] Heo J Y, Sung H G. Fluidic thrust-vector control of supersonic jet using coflow injection[J]. Journal of Propulsion and Power, 2012, 28(4): 858-861. [18] Wang Y S, Xu J L, Huang S, et al. Computational study of axisymmetric divergent bypass dual throat nozzle[J]. Aerospace Science and Technology, 2019, 86: 177-190. [19] Deere K A, Berrier B L, Flamm J D, et al. A computational study of a new dual throat fluidic thrust vectoring nozzle concept[R]. AIAA 2005-3502, 2005. [20] Maruyama Y, Sakata M, Takahashi Y. Performance analyses of fluidic thrust vector control system using dual throat nozzle[J]. AIAA Journal, 2022, 60(3): 1730-1744. [21] Shi N X, Gu Y S, Zhou Y H, et al. Mechanism of hysteresis and uncontrolled deflection in jet vectoring control based on Coanda effect[J]. Physics of Fluids, 2022, 34(8): 084107. [22] 史经纬. 固定几何气动矢量喷管流动机理及性能评估技术研究[D]. 西安: 西北工业大学, 2015.Shi J W. Investigation on flow mechanism and performance estimation of fixed-geometric thrust vectoring nozzle[D]. Xi'an: Northwestern Polytechnical University, 2015(in Chinese). [23] Walker S H. Lessons learned in the development of a national cooperative program[R]. AIAA 1997-3348, 1997. [24] Deere K. Computational investigation of the aerodynamic effects on fluidic thrust vectoring[R]. AIAA 2000-3598, 2000. [25] Waithe K A, Deere K A. Experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring[R]. AIAA 2003-3802, 2003. [26] Zigunov F, Song M J, Sellappan P, et al. Multiaxis shock vectoring control of over expanded supersonic jet using a genetic algorithm[J]. Journal of Propulsion and Power, 2023, 39(2): 249-257. [27] Younes K, Hickey J P. Fluidic thrust shock-vectoring control: a sensitivity analysis[J]. AIAA Journal, 2020, 58(4): 1887-1890. [28] Emelyanov V, Yakovchuk M, Volkov K. Multiparameter optimization of thrust vector control with transverse injection of a supersonic under expanded gas jet into a convergent divergent nozzle[J]. Energies, 2021, 14(14): 4359. [29] 史经纬, 王占学, 周莉, 等. 激波矢量喷管二次流喷口形态影响研究[J]. 工程热物理学报, 2014, 35(11): 2173-2177. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201411014.htmShi J W, Wang Z X, Zhou L, et al. Influence of secondary injection configuration on performance of shock vector nozzle[J]. Journal of Engineering Thermophysics, 2014, 35(11): 2173-2177(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201411014.htm [30] 王晓明, 刘辉, 韩龙柱, 等. 激波诱导推力矢量喷管不同气体喷注时的性能分析[J]. 北京航空航天大学学报, 2018, 44(11): 2267-2272. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201811003.htmWang X M, Liu H, Han L Z, et al. Performance analysis of shock thrust vector nozzle under different gas injections[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2267-2272(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201811003.htm [31] 张晓博, 王占学, 刘增文. 气动矢量喷管二次流对发动机性能的影响[J]. 推进技术, 2013, 34(1): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201301004.htmZhang X B, Wang Z X, Liu Z W. Influence of secondary flow in fluidic thrust vector nozzle on aero-engine performance[J]. Journal of Propulsion Technology, 2013, 34(1): 3-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201301004.htm [32] Gu R, Xu J L, Guo S. Experimental and numerical investigations of a bypass dual throat nozzle[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(8): 084501. [33] Deng R Y, Setoguchi T, Kim H D. Large eddy simulation of shock vector control using bypass flow passage[J]. International Journal of Heat and Fluid Flow, 2016, 62: 474-481. -