主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压捕获翼双翼构型宽速域气动性能研究

肖尧 崔凯 李广利 田中伟 常思源

肖尧, 崔凯, 李广利, 田中伟, 常思源. 高压捕获翼双翼构型宽速域气动性能研究[J]. 气体物理, 2023, 8(5): 54-60. doi: 10.19527/j.cnki.2096-1642.1049
引用本文: 肖尧, 崔凯, 李广利, 田中伟, 常思源. 高压捕获翼双翼构型宽速域气动性能研究[J]. 气体物理, 2023, 8(5): 54-60. doi: 10.19527/j.cnki.2096-1642.1049
XIAO Yao, CUI Kai, LI Guang-li, TIAN Zhong-wei, CHANG Si-yuan. Research on Aerodynamic Performance of High-Pressure Capturing Wing with Bi-Wing Configuration in Wide-Speed Range[J]. PHYSICS OF GASES, 2023, 8(5): 54-60. doi: 10.19527/j.cnki.2096-1642.1049
Citation: XIAO Yao, CUI Kai, LI Guang-li, TIAN Zhong-wei, CHANG Si-yuan. Research on Aerodynamic Performance of High-Pressure Capturing Wing with Bi-Wing Configuration in Wide-Speed Range[J]. PHYSICS OF GASES, 2023, 8(5): 54-60. doi: 10.19527/j.cnki.2096-1642.1049

高压捕获翼双翼构型宽速域气动性能研究

doi: 10.19527/j.cnki.2096-1642.1049
基金项目: 

国家自然科学基金 12002347

中国科学院基础前沿科学研究计划 ZDBS-LY-JSC005

详细信息
    作者简介:

    肖尧(1988-)男, 博士, 工程师, 主要研究方向为宽域高超飞行器气动布局设计与优化。E-mail: xiaoyao@imech.ac.cn

  • 中图分类号: V221+.3

Research on Aerodynamic Performance of High-Pressure Capturing Wing with Bi-Wing Configuration in Wide-Speed Range

  • 摘要: 宽域高超飞行器气动布局设计已是研究热点之一。高压捕获翼新型气动布局可同时满足高容积率、高升力和高升阻比, 此布局前期研究主要针对高超声速状态。基于该背景, 以宽域高超飞行器为主要目标, 依据高压捕获翼基本设计原理, 发展了一种新型双翼构型。对该构型的宽速域气动特性研究结果表明, 在亚声速条件下添加捕获翼可使飞行器升力系数提高约16.6%, 在跨声速区域捕获翼可抑制飞行器气动焦点跳变, 飞行器在全速域范围内均为纵向静稳定。

     

  • 图  1  高压捕获翼设计原理

    Figure  1.  Design principle of the high-pressure capturing wing

    图  2  高压捕获翼双翼构型及参考构型示意图

    Figure  2.  Illustration of the bi-wing configuration and the reference configuration of high-pressure capturing wing

    图  3  构型计算网格

    Figure  3.  Computational grid of configuration

    图  4  Ma=6工况压力分布云图

    Figure  4.  Pressure contours under Ma=6 condition

    图  5  Ma=6工况气动性能

    Figure  5.  Aerodynamic performance under Ma=6 condition

    图  6  Ma=0.5工况压力分布云图及流场涡结构

    Figure  6.  Pressure contour and vortex structures under Ma=0.5 condition

    图  7  俯仰力矩系数-升力系数曲线

    Figure  7.  Pitch moment-lift coefficient curves

    图  8  气动焦点随Mach数变化曲线

    Figure  8.  Aerodynamic focus with Mach number

    图  9  Ma=0.8, AoA=10°工况对称面压力分布云图

    Figure  9.  Pressure contours on the symmetric plane at Ma=0.8 AoA=5° condition

    表  1  计算工况

    Table  1.   Simulation conditions

    case Ma H/km AoA/(°)
    1 0.3 0 -5, 0, 5, 10, 15, 20, 25
    2 0.5 2
    3 0.8 3
    4 1.2 4
    5 2 8
    6 4 20
    7 6 30
    下载: 导出CSV

    表  2  亚声速工况升力系数

    Table  2.   Lift coefficient under subsonic conditions

    Ma configuration CL
    AoA=5° AoA=10° AoA=15° AoA=20°
    0.3 HCW 0.052 6 0.299 8 0.575 8 0.837 2
    HCW-Ref 0.055 8 0.257 2 0.503 5 0.747 0
    -5.8% 16.6% 14.4% 12.1%
    0.5 HCW 0.054 5 0.307 38 0.589 82 0.855 32
    HCW-Ref 0.057 14 0.263 82 0.517 16 0.769 18
    -4.6% 16.5% 14.0% 11.2%
    下载: 导出CSV
  • [1] 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012.

    Cai G B, Xu D J. Technology of hypersonic vehicle[M]. Beijing: Science Press, 2012(in Chinese).
    [2] 李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J]. 航空科学技术, 2020, 31(11): 7-13.

    Li X K, Wang X, Liu J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J]. Aeronautical Science & Technology, 2020, 31(11): 7-13(in Chinese).
    [3] 黄志澄. 高超声速飞行器空气动力学[M]. 北京: 国防工业出版社, 1995.
    [4] Lobbia M, Suzuki K. Multidisciplinary design optimization of hypersonic transport configurations using waveriders[R]. AIAA 2014-2359, 2014.
    [5] Rodi P E. Geometrical relationships for osculating cones and osculating flowfield waveriders[R]. AIAA 2011-1188, 2011.
    [6] Steelant J, Varvill R, Walton C, et al. Achievements obtained for sustained hypersonic flight within the LAPCAT-Ⅱ project[R]. AIAA 2015-3677, 2015.
    [7] Lee C. Lockheed Martin unveils SR-72[J]. Jane's Defence Weekly, 2013, 50(46): 6.
    [8] Guy N. Boeing unveils hypersonic 'Son-of-Blackbird' contender[EB/OL]. [2018-01-11]. http://awin.aviationweek.com/ArticlesStory.aspx?id=6267237e-e466-4c27-be75-cd963a5a6712.
    [9] Liu Z, Liu J, Ding F, et al. Novel methodology for wide-ranged multistage morphing waverider based on conical theory[J]. Acta Astronautica, 2017, 140: 362-369. doi: 10.1016/j.actaastro.2017.09.006
    [10] Li S B, Huang W, Wang Z G, et al. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range[J]. Science China-Information Sciences, 2014, 57(12): 1-10.
    [11] Zhang T T, Wang Z G, Huang W, et al. A design approach of wide-speed-range vehicles based on the cone-derived theory[J]. Aerospace Science and Technology, 2017, 71: 42-51. doi: 10.1016/j.ast.2017.09.010
    [12] 易怀喜, 王逗, 李珺, 等. 涡升力乘波体发展研究综述[J]. 航空工程进展, 2021, 12(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC202106001.htm

    Yi H X, Wang D, Li J, et al. Overview on the develop-ment research of vortex lift waverider[J]. Advances in Aeronautical Science and Engineering, 2021, 12(6): 1-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC202106001.htm
    [13] Wang J F, Liu C Z, Bai P, et al. Design methodology of the waverider with a controllable planar shape[J]. Acta Astronautica, 2018, 151: 504-510. doi: 10.1016/j.actaastro.2018.06.048
    [14] Liu C Z, Liu R J, Meng X F, et al. Experimental investigation on off-design performances of double-swept waverider[J]. AIAA Journal, 2023, 61(4): 1596-1607. doi: 10.2514/1.J062254
    [15] 陈冰雁, 刘传振, 纪楚群. 基于激波装配法的乘波体设计与分析[J]. 空气动力学学报, 2017, 35(3): 421-428.

    Chen B Y, Liu C Z, Ji C Q. Waverider design and analysis based on shock-fitting method[J]. Acta Aerodynamica Sinica, 2017, 35(3): 421-428(in Chinese).
    [16] 李珺, 易怀喜, 王逗, 等. 基于投影法的双后掠乘波体气动性能[J]. 航空学报, 2021, 42(12): 124703.

    Li J, Yi H X, Wang D, et al. Research on aerodynamic performance of double swept waverider based on projection method[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 124703(in Chinese).
    [17] 崔凯, 李广利, 胡守超, 等. 高速飞行器高压捕获翼气动布局概念研究[J]. 中国科学: 物理学力学天文学, 2013, 43(5): 652-661. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201305007.htm

    Cui K, Li G L, Hu S C, et al. Conceptual studies of the high pressure zone capture wing configuration for high speed air vehicles[J]. Scientia Sinica-Physica, Mechan-ica & Astronomica, 2013, 43(5): 652-661(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201305007.htm
    [18] Cui K, Li G L, Xiao Y, et al. High-pressure capturing wing configurations[J]. AIAA Journal, 2017, 55(6): 1909-1919.
    [19] 李广利, 崔凯, 肖尧, 等. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3): 576-584. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603006.htm

    Li G L, Cui K, Xiao Y, et al. The design method research for the position of high pressure capturing wing[J]. Chinese Journal of Theoretical and Applied Mecha-nics, 2016, 48(3): 576-584(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603006.htm
    [20] 李广利, 崔凯, 肖尧, 等. 高压捕获翼前缘型线优化和分析[J]. 力学学报, 2016, 48(4): 877-885. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201604014.htm

    Li G L, Cui K, Xiao Y, et al. Leading edge optimization and parameter analysis of high pressure capturing wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201604014.htm
    [21] Li G L, Cui K, Xiao Y, et al. Effects of shock impingement on aerothermal and aerodynamic performance for high-pressure capturing wings[R]. AIAA 2017-2199, 2017.
    [22] 王浩祥, 李广利, 杨靖, 等. 高压捕获翼构型亚跨超流动特性数值研究[J]. 力学学报, 2021, 53(11): 3056-3070. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202111016.htm

    Wang H X, Li G L, Yang J, et al. Numerical study on flow characteristics of high-pressure capturing wing configuration at subsonic, transonic and supersonic regime[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3056-3070(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202111016.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  13
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-04-20

目录

    /

    返回文章
    返回