主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转槽道湍流标量场输运特性数值模拟研究

张益宁 陈洋 蔡庆东 杨延涛

张益宁, 陈洋, 蔡庆东, 杨延涛. 旋转槽道湍流标量场输运特性数值模拟研究[J]. 气体物理, 2023, 8(5): 46-53. doi: 10.19527/j.cnki.2096-1642.1048
引用本文: 张益宁, 陈洋, 蔡庆东, 杨延涛. 旋转槽道湍流标量场输运特性数值模拟研究[J]. 气体物理, 2023, 8(5): 46-53. doi: 10.19527/j.cnki.2096-1642.1048
ZHANG Yi-ning, CHEN Yang, CAI Qing-dong, YANG Yan-tao. Numerical Simulation on the Scalar Transport in Rotating Channel Turbulence[J]. PHYSICS OF GASES, 2023, 8(5): 46-53. doi: 10.19527/j.cnki.2096-1642.1048
Citation: ZHANG Yi-ning, CHEN Yang, CAI Qing-dong, YANG Yan-tao. Numerical Simulation on the Scalar Transport in Rotating Channel Turbulence[J]. PHYSICS OF GASES, 2023, 8(5): 46-53. doi: 10.19527/j.cnki.2096-1642.1048

旋转槽道湍流标量场输运特性数值模拟研究

doi: 10.19527/j.cnki.2096-1642.1048
基金项目: 

国家自然科学基金 91852107

详细信息
    作者简介:

    张益宁(2000-)男, 博士, 主要研究方向为湍流、计算流体力学。E-mail: 2201112140@pku.edu.cn

    通讯作者:

    杨延涛(1983-)男, 特聘研究员, 主要研究方向为湍流、计算流体力学。E-mail: yantao.yang@pku.edu.cn

  • 中图分类号: O357.5

Numerical Simulation on the Scalar Transport in Rotating Channel Turbulence

  • 摘要: 展向旋转槽道湍流中的标量场输运过程是与众多工程流动直接相关的模型问题。基于直接数值模拟工作对该问题开展系统性的研究。由壁面摩擦速度定义的流动Reynolds数固定在180, 重点考察Schmidt数和旋转数的影响。结果表明, 较弱旋转强度即可对主导流动结构形态产生明显的影响: 此时槽道不稳定侧产生流向大尺度结构, 由此导致标量场出现条带状结构。强旋转时不稳定侧出现被湍流充分混合的区域, 而在稳定侧流动层流化并出现近似传导区。平均标量剖面在湍流区和层流区呈现斜率不同的线性分布。Schmidt数小于1时, 湍流区标量场脉动和湍流输运随旋转数出现非单调变化, 而Schmidt数大于等于1时两者都随旋转数单调下降。由此导致总标量传输率在Schmidt数小于1时随旋转数先上升后下降, 而当Schmidt数大于1时单调下降且在弱旋转区域下降趋势最快。

     

  • 图  1  计算区域及流动条件示意图

    Figure  1.  Sketch of the flow domain and flow condition

    图  2  不同Schmidt数和旋转数流场z-y截面上瞬时标量场分布云图

    Figure  2.  Contour of instantaneous scalar fields for different Schmidt and rotation numbers on an arbitrary z-y cross-section

    图  3  不同Schmidt数和旋转数流场中y=-0.5水平截面上瞬时标量场云图

    Figure  3.  Contour of instantaneous scalar fields at the horizontal plane y=-0.5 for different Schmidt and rotation numbers

    图  4  不同旋转数时平均流向速度和平均标量场剖面(曲线颜色从蓝到红代表旋转数的增加)

    Figure  4.  Mean profiles of streamwise velocity and scalar for different rotation numbers (curve color from blue to red represents an increase in rotation number)

    图  5  不同旋转数时标量场标准差剖面(曲线颜色从蓝到红代表旋转数的增加)

    Figure  5.  Profiles of standard deviation of scalar for different rotation numbers (curve color from blue to red represents an increase in rotation number)

    图  6  不同旋转数时<uc′>剖面(曲线颜色从蓝到红代表旋转数的增加)

    Figure  6.  Profiles of < uc′ > for different rotation numbers (curve color from blue to red represents an increase in rotation number)

    图  7  不同旋转数时<vc′>剖面(曲线颜色从蓝到红代表旋转数的增加)

    Figure  7.  Profiles of < vc′ > for different rotation numbers (curve color from blue to red represents an increase in rotation number)

    图  8  不同Schmidt数条件下Nusselt数随旋转数的变化

    Figure  8.  Dependence of Nu on Roτ for different Sc

    表  1  数值模拟设置

    Table  1.   Setting of numerical simulations

    Sc Roτ Lx Nx Ny mx my
    0.1 0~80 16 240~288 240~288 1 1
    1 0~100 16 320~384 160~288 1 1
    4 0~60 8 240~288 240~288 2 2
    10 0~60 8 240~288 240~288 4 2
    下载: 导出CSV
  • [1] 谢毅超, 张路, 丁广裕, 等. 热湍流研究的新十年: 从聚焦传统到延伸拓展[J]. 力学进展, 2023, 53(1): 1-47.

    Xie Y C, Zhang L, Ding G Y, et al. Progress in turbulent thermal convection in the past decade and outlook[J]. Advances in Mechanics, 2023, 53(1): 1-47(in Chinese).
    [2] Xia K Q, Huang S D, Xie Y C, et al. Tuning heat transport via coherent structure manipulation: recent advances in thermal turbulence[J]. National Science Review, 2023, 10(6): nwad012. doi: 10.1093/nsr/nwad012
    [3] Shraiman B I, Siggia E D. Scalar turbulence[J]. Nature, 2000, 405: 639-646. doi: 10.1038/35015000
    [4] Warhaft Z. Passive scalars in turbulent flows[J]. Annual Review of Fluid Mechanics, 2000, 32: 203-240. doi: 10.1146/annurev.fluid.32.1.203
    [5] Zhou Y. Turbulence theories and statistical closure approaches[J]. Physics Reports, 2021, 935: 1-117. doi: 10.1016/j.physrep.2021.07.001
    [6] Akhavan-Safaei A, Zayernouri M. A non-local spectral transfer model and new scaling law for scalar turbulence[J]. Journal of Fluid Mechanics, 2023, 956: A26. doi: 10.1017/jfm.2022.1066
    [7] Yerragolam G S, Stevens R J, Verzicco R, et al. Passive scalar transport in Couette flow[J]. Journal of Fluid Mechanics, 2022, 943: A17. doi: 10.1017/jfm.2022.368
    [8] Pirozzoli S, Romero J, Fatica M, et al. DNS of passive scalars in turbulent pipe flow[J]. Journal of Fluid Mechanics, 2022, 940: A45. doi: 10.1017/jfm.2022.265
    [9] Pirozzoli S, Bernardini M, Orlandi P. Passive scalars in turbulent channel flow at high Reynolds number[J]. Journal of Fluid Mechanics, 2016, 788: 614-639. doi: 10.1017/jfm.2015.711
    [10] Lluesma-Rodríguez F, Hoyas S, Perez-Quiles M J. Influence of the computational domain on DNS of turbulent heat transfer up to Reτ=2000 for Pr=0.71[J]. International Journal of Heat and Mass Transfer, 2018, 122: 983-992. doi: 10.1016/j.ijheatmasstransfer.2018.02.047
    [11] Tian A H, Liu F, Zhou Y. Related turbulent momentum and passive scalar transfer in a turbulent channel flow[J]. Acta Mechanica Sinica, 2022, 38: 322242. doi: 10.1007/s10409-022-22242-x
    [12] Nagano Y, Hattori H. Direct numerical simulation and modelling of spanwise rotating channel flow with heat transfer[J]. Journal of Turbulence, 2003, 4(1): 010.
    [13] Wu H B, Kasagi N. Turbulent heat transfer in a channel flow with arbitrary directional system rotation[J]. International Journal of Heat and Mass Transfer, 2004, 47(21): 4579-4591. doi: 10.1016/j.ijheatmasstransfer.2003.07.034
    [14] Brethouwer G. Passive scalar transport in rotating turbulent channel flow[J]. Journal of Fluid Mechanics, 2018, 844: 297-322. doi: 10.1017/jfm.2018.198
    [15] Brethouwer G. Influence of spanwise rotation and scalar boundary conditions on passive scalar transport in turbulent channel flow[J]. Physical Review Fluids, 2019, 4: 014602. doi: 10.1103/PhysRevFluids.4.014602
    [16] Pope S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000: 184-188.
    [17] Batchelor G K. Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity[J]. Journal of Fluid Mechanics, 1959, 5(1): 113-133. doi: 10.1017/S002211205900009X
    [18] Ostilla-Monico R, Yang Y T, Van Der Poel E P, et al. A multiple-resolution strategy for direct numerical simulation of scalar turbulence[J]. Journal of Computational Physics, 2015, 301: 308-321. doi: 10.1016/j.jcp.2015.08.031
    [19] Chong K L, Ding G Y, Xia K Q. Multiple-resolution scheme in finite-volume code for active or passive scalar turbulence[J]. Journal of Computational Physics, 2018, 375: 1045-1058. doi: 10.1016/j.jcp.2018.09.019
    [20] Kawamura H, Ohsaka K, Abe H, et al. DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid[J]. International Journal of Heat and Fluid Flow, 1998, 19(5): 482-491. doi: 10.1016/S0142-727X(98)10026-7
    [21] Schwertfirm F, Manhart M. DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1204-1214. doi: 10.1016/j.ijheatfluidflow.2007.05.012
    [22] Bergant R, Tiselj I. Near-wall passive scalar transport at high Prandtl numbers[J]. Physics of Fluids, 2007, 19(6): 065105. doi: 10.1063/1.2739402
    [23] 陈洋. 旋转槽道湍流中被动标量场的混合输运[D]. 北京: 北京大学, 2020.

    Chen Y. Passive scalar transport in rotating turbulent channel flow[D]. Beijing: Peking University, 2020(in Chinese).
    [24] Xia Z H, Shi Y P, Chen S Y. Direct numerical simulation of turbulent channel flow with spanwise rotation[J]. Journal of Fluid Mechanics, 2016, 788: 42-56. doi: 10.1017/jfm.2015.717
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  6
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-08
  • 修回日期:  2023-04-13

目录

    /

    返回文章
    返回