Numerical Simulation on the Scalar Transport in Rotating Channel Turbulence
-
摘要: 展向旋转槽道湍流中的标量场输运过程是与众多工程流动直接相关的模型问题。基于直接数值模拟工作对该问题开展系统性的研究。由壁面摩擦速度定义的流动Reynolds数固定在180, 重点考察Schmidt数和旋转数的影响。结果表明, 较弱旋转强度即可对主导流动结构形态产生明显的影响: 此时槽道不稳定侧产生流向大尺度结构, 由此导致标量场出现条带状结构。强旋转时不稳定侧出现被湍流充分混合的区域, 而在稳定侧流动层流化并出现近似传导区。平均标量剖面在湍流区和层流区呈现斜率不同的线性分布。Schmidt数小于1时, 湍流区标量场脉动和湍流输运随旋转数出现非单调变化, 而Schmidt数大于等于1时两者都随旋转数单调下降。由此导致总标量传输率在Schmidt数小于1时随旋转数先上升后下降, 而当Schmidt数大于1时单调下降且在弱旋转区域下降趋势最快。Abstract: Passive scalar transport in channel turbulence with spanwise rotation is of relevance to many engineering applications. A systematical study on this problem was conducted based on direct numerical simulations. The Reynolds number defined by wall-friction velocity was fixed at 180, and the influences of the Schmidt and rotation numbers were investigated. Results reveal that even a weak rotation can have strong effects on the dominant flow structures: streamwise long streaks appear in scalar field at the unstable side due to the development of large scale streamwise rolls in the momentum field. With strong rotation, there exists a well mixed turbulent region at the unstable side, and a conductive region with near laminar flow at the stable side. The mean scalar profiles are linear in both the turbulent and conductive regions with different slopes. When the Schmidt number is smaller than unity, both the scalar fluctuation and convective transport in the turbulent region show nonmonotonic variations with rotation number, while they monotonically decrease for Schmidt number equal to or larger than unity. Therefore, for Schmidt number smaller than unity, the total flux first increases and then decreases as the rotation becomes faster. But the total flux decreases with the rotation speed when the Schmidt number is equal to or larger than unity, and it decreases fastest at small rotation speeds.
-
表 1 数值模拟设置
Table 1. Setting of numerical simulations
Sc Roτ Lx Nx Ny mx my 0.1 0~80 16 240~288 240~288 1 1 1 0~100 16 320~384 160~288 1 1 4 0~60 8 240~288 240~288 2 2 10 0~60 8 240~288 240~288 4 2 -
[1] 谢毅超, 张路, 丁广裕, 等. 热湍流研究的新十年: 从聚焦传统到延伸拓展[J]. 力学进展, 2023, 53(1): 1-47.Xie Y C, Zhang L, Ding G Y, et al. Progress in turbulent thermal convection in the past decade and outlook[J]. Advances in Mechanics, 2023, 53(1): 1-47(in Chinese). [2] Xia K Q, Huang S D, Xie Y C, et al. Tuning heat transport via coherent structure manipulation: recent advances in thermal turbulence[J]. National Science Review, 2023, 10(6): nwad012. doi: 10.1093/nsr/nwad012 [3] Shraiman B I, Siggia E D. Scalar turbulence[J]. Nature, 2000, 405: 639-646. doi: 10.1038/35015000 [4] Warhaft Z. Passive scalars in turbulent flows[J]. Annual Review of Fluid Mechanics, 2000, 32: 203-240. doi: 10.1146/annurev.fluid.32.1.203 [5] Zhou Y. Turbulence theories and statistical closure approaches[J]. Physics Reports, 2021, 935: 1-117. doi: 10.1016/j.physrep.2021.07.001 [6] Akhavan-Safaei A, Zayernouri M. A non-local spectral transfer model and new scaling law for scalar turbulence[J]. Journal of Fluid Mechanics, 2023, 956: A26. doi: 10.1017/jfm.2022.1066 [7] Yerragolam G S, Stevens R J, Verzicco R, et al. Passive scalar transport in Couette flow[J]. Journal of Fluid Mechanics, 2022, 943: A17. doi: 10.1017/jfm.2022.368 [8] Pirozzoli S, Romero J, Fatica M, et al. DNS of passive scalars in turbulent pipe flow[J]. Journal of Fluid Mechanics, 2022, 940: A45. doi: 10.1017/jfm.2022.265 [9] Pirozzoli S, Bernardini M, Orlandi P. Passive scalars in turbulent channel flow at high Reynolds number[J]. Journal of Fluid Mechanics, 2016, 788: 614-639. doi: 10.1017/jfm.2015.711 [10] Lluesma-Rodríguez F, Hoyas S, Perez-Quiles M J. Influence of the computational domain on DNS of turbulent heat transfer up to Reτ=2000 for Pr=0.71[J]. International Journal of Heat and Mass Transfer, 2018, 122: 983-992. doi: 10.1016/j.ijheatmasstransfer.2018.02.047 [11] Tian A H, Liu F, Zhou Y. Related turbulent momentum and passive scalar transfer in a turbulent channel flow[J]. Acta Mechanica Sinica, 2022, 38: 322242. doi: 10.1007/s10409-022-22242-x [12] Nagano Y, Hattori H. Direct numerical simulation and modelling of spanwise rotating channel flow with heat transfer[J]. Journal of Turbulence, 2003, 4(1): 010. [13] Wu H B, Kasagi N. Turbulent heat transfer in a channel flow with arbitrary directional system rotation[J]. International Journal of Heat and Mass Transfer, 2004, 47(21): 4579-4591. doi: 10.1016/j.ijheatmasstransfer.2003.07.034 [14] Brethouwer G. Passive scalar transport in rotating turbulent channel flow[J]. Journal of Fluid Mechanics, 2018, 844: 297-322. doi: 10.1017/jfm.2018.198 [15] Brethouwer G. Influence of spanwise rotation and scalar boundary conditions on passive scalar transport in turbulent channel flow[J]. Physical Review Fluids, 2019, 4: 014602. doi: 10.1103/PhysRevFluids.4.014602 [16] Pope S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000: 184-188. [17] Batchelor G K. Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity[J]. Journal of Fluid Mechanics, 1959, 5(1): 113-133. doi: 10.1017/S002211205900009X [18] Ostilla-Monico R, Yang Y T, Van Der Poel E P, et al. A multiple-resolution strategy for direct numerical simulation of scalar turbulence[J]. Journal of Computational Physics, 2015, 301: 308-321. doi: 10.1016/j.jcp.2015.08.031 [19] Chong K L, Ding G Y, Xia K Q. Multiple-resolution scheme in finite-volume code for active or passive scalar turbulence[J]. Journal of Computational Physics, 2018, 375: 1045-1058. doi: 10.1016/j.jcp.2018.09.019 [20] Kawamura H, Ohsaka K, Abe H, et al. DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid[J]. International Journal of Heat and Fluid Flow, 1998, 19(5): 482-491. doi: 10.1016/S0142-727X(98)10026-7 [21] Schwertfirm F, Manhart M. DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1204-1214. doi: 10.1016/j.ijheatfluidflow.2007.05.012 [22] Bergant R, Tiselj I. Near-wall passive scalar transport at high Prandtl numbers[J]. Physics of Fluids, 2007, 19(6): 065105. doi: 10.1063/1.2739402 [23] 陈洋. 旋转槽道湍流中被动标量场的混合输运[D]. 北京: 北京大学, 2020.Chen Y. Passive scalar transport in rotating turbulent channel flow[D]. Beijing: Peking University, 2020(in Chinese). [24] Xia Z H, Shi Y P, Chen S Y. Direct numerical simulation of turbulent channel flow with spanwise rotation[J]. Journal of Fluid Mechanics, 2016, 788: 42-56. doi: 10.1017/jfm.2015.717 -