[1] |
谢峤峰, 王兵, 董琨. 基于连续旋转爆震的推进技术研究进展[J]. 气体物理, 2020, 5(1): 1-23. doi: 10.19527/j.cnki.2096-1642.0744Xie Q F, Wang B, Dong K. Progress in research of rotating detonation propulsion[J]. Physics of Gases, 2020, 5(1): 1-23(in Chinese). doi: 10.19527/j.cnki.2096-1642.0744
|
[2] |
王健平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展[J]. 实验流体力学, 2015, 29(4): 12-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201504002.htmWang J P, Zhou R, Wu D. Progress of continuously rotating detonation engine research[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 12-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201504002.htm
|
[3] |
张少杰, 蔡晓东, 陈伟强, 等. 超声速气流中的爆震推进理论与研究进展[J]. 气体物理, 2018, 3(2): 27-38. doi: 10.19527/j.cnki.2096-1642.2018.02.003Zhang S J, Cai X D, Chen W Q, et al. Theory and research progress of detonation propulsion in supersonic flow[J]. Physics of Gases, 2018, 3(2): 27-38(in Chinese). doi: 10.19527/j.cnki.2096-1642.2018.02.003
|
[4] |
姜宗林. 关于超声速燃烧与高超动力[J]. 力学进展, 2021, 51(1): 130-140. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ202101006.htmJiang Z L. On supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2021, 51(1): 130-140(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ202101006.htm
|
[5] |
Kawalec M, Wolański P, Perkowski W, et al. Development of a liquid-propellant rocket powered by a rotating detonation engine[J]. Journal of Propulsion and Power, 2023, 39(4): 1-8.
|
[6] |
Zhang Y Z, Sheng Z H, Rong G Y, et al. Experimental research on the performance of hollow and annular rotating detonation engines with nozzles[J]. Applied Thermal Engineering, 2023, 218: 119339. doi: 10.1016/j.applthermaleng.2022.119339
|
[7] |
Wang Z T, Qi L, Liu S Z, et al. The influence of component parameters on cycle characteristic in rotating detonation gas turbine[J]. Applied Thermal Engineering, 2023, 220: 119716. doi: 10.1016/j.applthermaleng.2022.119716
|
[8] |
Qi L, Dong J N, Hong W P, et al. Investigation of rotating detonation gas turbine cycle under design and off-design conditions[J]. Energy, 2023, 264: 126212. doi: 10.1016/j.energy.2022.126212
|
[9] |
Wu Y W, Weng C S, Zheng Q, et al. Experimental research on the performance of a rotating detonation combustor with a turbine guide vane[J]. Energy, 2021, 218: 119580. doi: 10.1016/j.energy.2020.119580
|
[10] |
王超, 郑榆山, 蔡建华, 等. 碳氢燃料旋转爆震直连试验研究[J]. 实验流体力学, 2022, 36(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC202204001.htmWang C, Zheng Y S, Cai J H, et al. Direct connected experimental research on hydrocarbon-fueled rotating deto-nation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 1-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC202204001.htm
|
[11] |
王超, 刘卫东, 刘世杰, 等. 高总温来流下的连续旋转爆震验证试验[J]. 推进技术, 2016, 37(3): 578-584. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201603023.htmWang C, Liu W D, Liu S J, et al. Validating experiment of continuous rotating detonation under high total tempera-ture air[J]. Journal of Propulsion Technology, 2016, 37(3): 578-584(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201603023.htm
|
[12] |
聂百胜, 宫婕, 王晓彤, 等. 深部流态化开采中原位煤粉爆轰发电技术构想[J]. 矿业科学学报, 2021, 6(3): 271-279. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202103004.htmNie B S, Gong J, Wang X T, et al. Technological conception of in-situ pulverized coal combustion and explosion power generation based on the deep fluidization mining[J]. Journal of Mining Science and Technology, 2021, 6(3): 271-279(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202103004.htm
|
[13] |
祝文超, 王健平, 王宇辉, 等. 空气流量对煤粉-空气两相旋转爆轰波的影响[J]. 煤炭学报, 2022, 47(10): 3715-3728. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202210015.htmZhu W C, Wang J P, Wang Y H, et al. Effect of the air mass flow rate on coal-air two-phase rotating detonation waves[J]. Journal of China Coal Society, 2022, 47(10): 3715-3728(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202210015.htm
|
[14] |
Xu H, Ni X D, Su X J, et al. Experimental investigation on the application of the coal powder as fuel in a rotating detonation combustor[J]. Applied Thermal Engineering, 2022, 213: 118642. doi: 10.1016/j.applthermaleng.2022.118642
|
[15] |
Canteins G. Etude de la détonation continue rotative-Application à la propulsion[D]. Poitou-Charentes: Université de Poitiers, 2006.
|
[16] |
Lin W, Zhou J, Liu S, et al. Experimental study on propagation mode of H2/Air continuously rotating detonation wave[J]. International Journal of Hydrogen Energy, 2015, 40(4): 1980-1993. doi: 10.1016/j.ijhydene.2014.11.119
|
[17] |
刘世杰. 连续旋转爆震波结构、传播模态及自持机理研究[D]. 长沙: 国防科学技术大学, 2012.Liu S J. Investigations on the structure, rotating mode and lasting mechanism of continuous rotating detonation wave[D]. Changsha: National University of Defense Technolo-gy, 2012(in Chinese).
|
[18] |
Anand V, ST George A, Driscoll R, et al. Characterization of instabilities in a rotating detonation combustor[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16649-16659. doi: 10.1016/j.ijhydene.2015.09.046
|
[19] |
Ma Z, Zhang S J, Luan M Y, et al. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18521-18529.
|
[20] |
Zhou S B, Ma H, Ma Y, et al. Experimental investigation on detonation wave propagation mode in the start-up process of rotating detonation turbine engine[J]. Aerospace Scien-ce and Technology, 2021, 111: 106559.
|
[21] |
Lin W, Tong Y H, Lin Z Y, et al. Propagation mode analysis on H2-air rotating detonation waves in a hollow combustor[J]. AIAA Journal, 2020, 58(12): 5052-5062.
|
[22] |
Wu Y W, Xu G, Ding C W, et al. On the wave propagation modes and operation range in rotating detonation combustor with varied injection and outlet throat[J]. Physics of Fluids, 2023, 35(1): 016128.
|
[23] |
吴明亮, 郑权, 续晗, 等. 氢气占比对氢气-煤油-空气旋转爆轰波传播特性的影响[J]. 兵工学报, 2022, 43(1): 86-97. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202201010.htmWu M L, Zheng Q, Xu H, et al. The influence of hydrogen proportion on the propagation characteristics of hydrogen-kerosene-air rotating detonation waves[J]. Acta Armamentarii, 2022, 43(1): 86-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202201010.htm
|
[24] |
Yao S B, Tang X M, Zhang W W. Adaptive operating mode switching process in rotating detonation engines[J]. Acta Astronautica, 2023, 205: 239-246.
|
[25] |
沈洋, 刘凯欣, 陈璞, 等. 采用改进的CE/SE方法模拟方管中氢氧爆轰波的稳定传播结构[J]. 航空学报, 2019, 40(5): 122591. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201905007.htmShen Y, Liu K X, Chen P, et al. Simulations of stable structure in oxy-hydrogen detonation in square ducts using an improved CE/SE scheme[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122591(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201905007.htm
|
[26] |
刘云峰, 姜宗林. 详细化学反应模型中温度修正项特性研究[J]. 中国科学: 物理学力学天文学, 2011, 41(11): 1296-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201111009.htmLiu Y F, Jiang Z L. Study on the chemical reaction kine-tics of detonation models[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2011, 41(11): 1296-1306(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201111009.htm
|
[27] |
Ma F H, Choi J Y, Yang V. Propulsive performance of airbreathing pulse detonation engines[J]. Journal of Propulsion and Power, 2006, 22(6): 1188-1203.
|
[28] |
Yi T H, Turangan C, Lou J, et al. A three-dimensional numerical study of rotational detonation in an annular chamber[R]. AIAA 2009-634, 2009
|
[29] |
Gamezo V N, Desbordes D, Oran E S. Formation and evolution of two-dimensional cellular detonations[J]. Combustion and Flame, 1999, 116(1-2): 154-165.
|
[30] |
Balsara D S, Shu C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452.
|
[31] |
Tang X M, Wang J P, Shao Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162(4): 997-1008.
|
[32] |
Yao S B, Tang X M, Luan M Y, et al. Numerical study of hollow rotating detonation engine with different fuel injection area ratios[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2649-2655.
|
[33] |
Yao S B, Wang J P. Multiple ignitions and the stability of rotating detonation waves[J]. Applied Thermal Engineering, 2016, 108: 927-936.
|
[34] |
Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonation in annular combustors[J]. Combustion, Explosion and Shock Waves, 2005, 41(4): 449-459.
|
[35] |
Yao S B, Liu M, Wang J P. Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine[J]. Combustion Science and Technology, 2015, 187(12): 1867-1878.
|
[36] |
Browne S, Ziegler J, Shepherd J E. Numerical solution methods for shock and detonation jump conditions[R]. GALCIT Report FM 2006. 006, 2006.
|
[37] |
Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6): 1204-1216.
|
[38] |
Luan Z Y, Huang Y J, Gao S J, et al. Formation of multiple detonation waves in rotating detonation engines with inhomogeneous methane/oxygen mixtures under different equivalence ratios[J]. Combustion and Flame, 2022, 241: 112091.
|
[39] |
Wolański P. Rotating detonation wave stability[C]. Proceedings of the 23rd International Colloquium on the Dynamics of Explosion and Reactive Systems. Irvine: ICDERS, 2011.
|