主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变工况下连续旋转爆轰发动机模态转换研究

姚松柏 唐新猛 张文武

姚松柏, 唐新猛, 张文武. 变工况下连续旋转爆轰发动机模态转换研究[J]. 气体物理, 2023, 8(5): 10-18. doi: 10.19527/j.cnki.2096-1642.1041
引用本文: 姚松柏, 唐新猛, 张文武. 变工况下连续旋转爆轰发动机模态转换研究[J]. 气体物理, 2023, 8(5): 10-18. doi: 10.19527/j.cnki.2096-1642.1041
YAO Song-bai, TANG Xin-meng, ZHANG Wen-wu. Effects of Inlet Condition Variations on the Operating Modes of Rotating Detonation Engines[J]. PHYSICS OF GASES, 2023, 8(5): 10-18. doi: 10.19527/j.cnki.2096-1642.1041
Citation: YAO Song-bai, TANG Xin-meng, ZHANG Wen-wu. Effects of Inlet Condition Variations on the Operating Modes of Rotating Detonation Engines[J]. PHYSICS OF GASES, 2023, 8(5): 10-18. doi: 10.19527/j.cnki.2096-1642.1041

变工况下连续旋转爆轰发动机模态转换研究

doi: 10.19527/j.cnki.2096-1642.1041
基金项目: 

宁波市自然科学基金 2023J413

宁波市甬江引才工程青年创新人才项目 2022A-210-G

详细信息
    作者简介:

    姚松柏(1990-)男, 博士, 副研究员, 主要研究方向为爆轰推进技术。E-mail: yaosongbai@nimte.ac.cn

  • 中图分类号: V231.2

Effects of Inlet Condition Variations on the Operating Modes of Rotating Detonation Engines

  • 摘要: 采用数值模拟方法分析了来流工况变化对连续旋转爆轰发动机(rotating detonation engine, RDE)工作模态的影响。研究发现, 随着进气总压的下降, 流量将迅速减小, 旋转爆轰波可以首先通过调整波头高度和传播速度来匹配新的工况, 维持稳定传播; 如果进气总压下降幅度较大, 旋转爆轰波只能通过调整流场中波面的数目才能匹配新的工况, 此时RDE将发生自适应性的工作模态转换。研究中验证了稳定阶段旋转爆轰波特征参数(波面数目、传播速度以及波头高度)与燃烧室几何尺寸、工况(流量)之间需要满足的近似匹配关系式, 用于解释RDE的工作模态转换过程及变化规律。

     

  • 图  1  RDE工作模态转换现象(高频压力传感器信号[19])

    Figure  1.  Operating mode transitions in the RDE(high-frequency pressure signals [19])

    图  2  RDE燃烧室结构与计算域示意图

    Figure  2.  Schematic of the RDE combustor and computational domain

    图  3  不同网格分辨率下RDE流场压力分布[33]

    Figure  3.  Pressure distributions of the RDE flow field at various resolutions[33]

    图  4  RDE多波面工作模态

    Figure  4.  RDE at a multi-wave operating mode

    图  5  来流工况(进气总压)变化情况示意图

    Figure  5.  Schematic of the variations of operating conditions (inlet total pressure)

    图  6  算例A中进气总压下降阶段RDE流场温度云图和新鲜燃料分布(RDE发生工作模态转换)

    Figure  6.  Temperature contour and fresh reactant distribution during the stage of inlet total pressure drop in case A (Operating mode transition was induced)

    图  7  进气总压恢复后重新稳定的RDE流场温度云图和新鲜燃料分布(算例A和A*)

    Figure  7.  Temperature contour and fresh reactant distribution during the re-stabilization stage of inlet total pressure (case A and A*)

    图  8  算例B中RDE流场温度云图和新鲜燃料分布(RDE没有发生工作模态转换)

    Figure  8.  Temperature contour and fresh reactant distribution in case B (Operating mode transition was not induced)

    图  9  RDE流场压力-时间曲线

    Figure  9.  Pressure-time traces of the RDE flow field

    图  10  RDE进气流量随时间变化趋势

    Figure  10.  Variations of the inlet mass flow rate with time in the RDE

    图  11  算例A/A*工作模态转换前后旋转爆轰波的特征参数与燃烧室尺寸以及工况之间的近似匹配关系式图

    Figure  11.  Diagram of the matching relation between the characteristic parameters of the rotating detonation waves, the geometry of the combustor, and the operating conditions for case A/A*

    表  1  氢-空气一步总包化学反应模型参数[27]

    Table  1.   Model parameters of the one-step chemistry for the hydrogen-air mixture[27]

    γ1 γ2 q/(J/kg) R1/[J/(kg·K)] R2/[J/(kg·K)] Ta/K A/(1/s)
    1.396 1 1.165 3 5.470 4×106 395.75 346.2 15 100 1.0×109
    下载: 导出CSV
  • [1] 谢峤峰, 王兵, 董琨. 基于连续旋转爆震的推进技术研究进展[J]. 气体物理, 2020, 5(1): 1-23. doi: 10.19527/j.cnki.2096-1642.0744

    Xie Q F, Wang B, Dong K. Progress in research of rotating detonation propulsion[J]. Physics of Gases, 2020, 5(1): 1-23(in Chinese). doi: 10.19527/j.cnki.2096-1642.0744
    [2] 王健平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展[J]. 实验流体力学, 2015, 29(4): 12-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201504002.htm

    Wang J P, Zhou R, Wu D. Progress of continuously rotating detonation engine research[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 12-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201504002.htm
    [3] 张少杰, 蔡晓东, 陈伟强, 等. 超声速气流中的爆震推进理论与研究进展[J]. 气体物理, 2018, 3(2): 27-38. doi: 10.19527/j.cnki.2096-1642.2018.02.003

    Zhang S J, Cai X D, Chen W Q, et al. Theory and research progress of detonation propulsion in supersonic flow[J]. Physics of Gases, 2018, 3(2): 27-38(in Chinese). doi: 10.19527/j.cnki.2096-1642.2018.02.003
    [4] 姜宗林. 关于超声速燃烧与高超动力[J]. 力学进展, 2021, 51(1): 130-140. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ202101006.htm

    Jiang Z L. On supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2021, 51(1): 130-140(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ202101006.htm
    [5] Kawalec M, Wolański P, Perkowski W, et al. Development of a liquid-propellant rocket powered by a rotating detonation engine[J]. Journal of Propulsion and Power, 2023, 39(4): 1-8.
    [6] Zhang Y Z, Sheng Z H, Rong G Y, et al. Experimental research on the performance of hollow and annular rotating detonation engines with nozzles[J]. Applied Thermal Engineering, 2023, 218: 119339. doi: 10.1016/j.applthermaleng.2022.119339
    [7] Wang Z T, Qi L, Liu S Z, et al. The influence of component parameters on cycle characteristic in rotating detonation gas turbine[J]. Applied Thermal Engineering, 2023, 220: 119716. doi: 10.1016/j.applthermaleng.2022.119716
    [8] Qi L, Dong J N, Hong W P, et al. Investigation of rotating detonation gas turbine cycle under design and off-design conditions[J]. Energy, 2023, 264: 126212. doi: 10.1016/j.energy.2022.126212
    [9] Wu Y W, Weng C S, Zheng Q, et al. Experimental research on the performance of a rotating detonation combustor with a turbine guide vane[J]. Energy, 2021, 218: 119580. doi: 10.1016/j.energy.2020.119580
    [10] 王超, 郑榆山, 蔡建华, 等. 碳氢燃料旋转爆震直连试验研究[J]. 实验流体力学, 2022, 36(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC202204001.htm

    Wang C, Zheng Y S, Cai J H, et al. Direct connected experimental research on hydrocarbon-fueled rotating deto-nation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 1-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC202204001.htm
    [11] 王超, 刘卫东, 刘世杰, 等. 高总温来流下的连续旋转爆震验证试验[J]. 推进技术, 2016, 37(3): 578-584. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201603023.htm

    Wang C, Liu W D, Liu S J, et al. Validating experiment of continuous rotating detonation under high total tempera-ture air[J]. Journal of Propulsion Technology, 2016, 37(3): 578-584(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201603023.htm
    [12] 聂百胜, 宫婕, 王晓彤, 等. 深部流态化开采中原位煤粉爆轰发电技术构想[J]. 矿业科学学报, 2021, 6(3): 271-279. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202103004.htm

    Nie B S, Gong J, Wang X T, et al. Technological conception of in-situ pulverized coal combustion and explosion power generation based on the deep fluidization mining[J]. Journal of Mining Science and Technology, 2021, 6(3): 271-279(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202103004.htm
    [13] 祝文超, 王健平, 王宇辉, 等. 空气流量对煤粉-空气两相旋转爆轰波的影响[J]. 煤炭学报, 2022, 47(10): 3715-3728. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202210015.htm

    Zhu W C, Wang J P, Wang Y H, et al. Effect of the air mass flow rate on coal-air two-phase rotating detonation waves[J]. Journal of China Coal Society, 2022, 47(10): 3715-3728(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202210015.htm
    [14] Xu H, Ni X D, Su X J, et al. Experimental investigation on the application of the coal powder as fuel in a rotating detonation combustor[J]. Applied Thermal Engineering, 2022, 213: 118642. doi: 10.1016/j.applthermaleng.2022.118642
    [15] Canteins G. Etude de la détonation continue rotative-Application à la propulsion[D]. Poitou-Charentes: Université de Poitiers, 2006.
    [16] Lin W, Zhou J, Liu S, et al. Experimental study on propagation mode of H2/Air continuously rotating detonation wave[J]. International Journal of Hydrogen Energy, 2015, 40(4): 1980-1993. doi: 10.1016/j.ijhydene.2014.11.119
    [17] 刘世杰. 连续旋转爆震波结构、传播模态及自持机理研究[D]. 长沙: 国防科学技术大学, 2012.

    Liu S J. Investigations on the structure, rotating mode and lasting mechanism of continuous rotating detonation wave[D]. Changsha: National University of Defense Technolo-gy, 2012(in Chinese).
    [18] Anand V, ST George A, Driscoll R, et al. Characterization of instabilities in a rotating detonation combustor[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16649-16659. doi: 10.1016/j.ijhydene.2015.09.046
    [19] Ma Z, Zhang S J, Luan M Y, et al. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18521-18529.
    [20] Zhou S B, Ma H, Ma Y, et al. Experimental investigation on detonation wave propagation mode in the start-up process of rotating detonation turbine engine[J]. Aerospace Scien-ce and Technology, 2021, 111: 106559.
    [21] Lin W, Tong Y H, Lin Z Y, et al. Propagation mode analysis on H2-air rotating detonation waves in a hollow combustor[J]. AIAA Journal, 2020, 58(12): 5052-5062.
    [22] Wu Y W, Xu G, Ding C W, et al. On the wave propagation modes and operation range in rotating detonation combustor with varied injection and outlet throat[J]. Physics of Fluids, 2023, 35(1): 016128.
    [23] 吴明亮, 郑权, 续晗, 等. 氢气占比对氢气-煤油-空气旋转爆轰波传播特性的影响[J]. 兵工学报, 2022, 43(1): 86-97. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202201010.htm

    Wu M L, Zheng Q, Xu H, et al. The influence of hydrogen proportion on the propagation characteristics of hydrogen-kerosene-air rotating detonation waves[J]. Acta Armamentarii, 2022, 43(1): 86-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202201010.htm
    [24] Yao S B, Tang X M, Zhang W W. Adaptive operating mode switching process in rotating detonation engines[J]. Acta Astronautica, 2023, 205: 239-246.
    [25] 沈洋, 刘凯欣, 陈璞, 等. 采用改进的CE/SE方法模拟方管中氢氧爆轰波的稳定传播结构[J]. 航空学报, 2019, 40(5): 122591. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201905007.htm

    Shen Y, Liu K X, Chen P, et al. Simulations of stable structure in oxy-hydrogen detonation in square ducts using an improved CE/SE scheme[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122591(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201905007.htm
    [26] 刘云峰, 姜宗林. 详细化学反应模型中温度修正项特性研究[J]. 中国科学: 物理学力学天文学, 2011, 41(11): 1296-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201111009.htm

    Liu Y F, Jiang Z L. Study on the chemical reaction kine-tics of detonation models[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2011, 41(11): 1296-1306(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201111009.htm
    [27] Ma F H, Choi J Y, Yang V. Propulsive performance of airbreathing pulse detonation engines[J]. Journal of Propulsion and Power, 2006, 22(6): 1188-1203.
    [28] Yi T H, Turangan C, Lou J, et al. A three-dimensional numerical study of rotational detonation in an annular chamber[R]. AIAA 2009-634, 2009
    [29] Gamezo V N, Desbordes D, Oran E S. Formation and evolution of two-dimensional cellular detonations[J]. Combustion and Flame, 1999, 116(1-2): 154-165.
    [30] Balsara D S, Shu C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452.
    [31] Tang X M, Wang J P, Shao Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162(4): 997-1008.
    [32] Yao S B, Tang X M, Luan M Y, et al. Numerical study of hollow rotating detonation engine with different fuel injection area ratios[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2649-2655.
    [33] Yao S B, Wang J P. Multiple ignitions and the stability of rotating detonation waves[J]. Applied Thermal Engineering, 2016, 108: 927-936.
    [34] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonation in annular combustors[J]. Combustion, Explosion and Shock Waves, 2005, 41(4): 449-459.
    [35] Yao S B, Liu M, Wang J P. Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine[J]. Combustion Science and Technology, 2015, 187(12): 1867-1878.
    [36] Browne S, Ziegler J, Shepherd J E. Numerical solution methods for shock and detonation jump conditions[R]. GALCIT Report FM 2006. 006, 2006.
    [37] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6): 1204-1216.
    [38] Luan Z Y, Huang Y J, Gao S J, et al. Formation of multiple detonation waves in rotating detonation engines with inhomogeneous methane/oxygen mixtures under different equivalence ratios[J]. Combustion and Flame, 2022, 241: 112091.
    [39] Wolański P. Rotating detonation wave stability[C]. Proceedings of the 23rd International Colloquium on the Dynamics of Explosion and Reactive Systems. Irvine: ICDERS, 2011.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  12
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-03-21

目录

    /

    返回文章
    返回