主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尖楔模型结构对脉动压力测量影响实验研究

沙心国 李睿劬 刘文伶 纪锋 袁湘江

沙心国, 李睿劬, 刘文伶, 纪锋, 袁湘江. 尖楔模型结构对脉动压力测量影响实验研究[J]. 气体物理, 2021, 6(3): 43-49. doi: 10.19527/j.cnki.2096-1642.0847
引用本文: 沙心国, 李睿劬, 刘文伶, 纪锋, 袁湘江. 尖楔模型结构对脉动压力测量影响实验研究[J]. 气体物理, 2021, 6(3): 43-49. doi: 10.19527/j.cnki.2096-1642.0847
SHA Xin-guo, LI Rui-qu, LIU Wen-ling, JI Feng, YUAN Xiang-jiang. Experimental Study of the Wedge Model Structure Effect on the Pressure Fluctuation Measurement[J]. PHYSICS OF GASES, 2021, 6(3): 43-49. doi: 10.19527/j.cnki.2096-1642.0847
Citation: SHA Xin-guo, LI Rui-qu, LIU Wen-ling, JI Feng, YUAN Xiang-jiang. Experimental Study of the Wedge Model Structure Effect on the Pressure Fluctuation Measurement[J]. PHYSICS OF GASES, 2021, 6(3): 43-49. doi: 10.19527/j.cnki.2096-1642.0847

尖楔模型结构对脉动压力测量影响实验研究

doi: 10.19527/j.cnki.2096-1642.0847
基金项目: 

国家重点研发计划资助项目 2019YFA0405300

国家重点研发计划资助项目 2019YFA0405200

详细信息
    作者简介:

    沙心国(1987-)男, 高工, 主要研究方向为高超声速空气动力学及相关测试技术.E-mail: shaxg@163.com

    通讯作者:

    袁湘江(1962-)男, 研究员, 博导, 主要研究方向为空气动力学与流动稳定性.E-mail: yuan_xj18@163.com

  • 中图分类号: O354.4

Experimental Study of the Wedge Model Structure Effect on the Pressure Fluctuation Measurement

  • 摘要: 高超声速边界层转捩与湍流研究是当前空气动力学研究的一个热门领域,脉动压力测量技术在高超声速风洞背景噪声测量和边界层内扰动波发展研究实验中得到了广泛应用.脉动压力传感器由于灵敏度高、测量频率范围宽,其测量结果受多方面因素影响.文章以尖楔模型为研究对象,在常规高超声速风洞中开展了模型背面凸起对表面脉动压力测量结果影响的实验研究,获得了3种背面结构(方型凸起、斜坡型凸起和无凸起)模型表面脉动压力信息,对比发现模型背面方型凸起和斜坡型凸起使得模型表面声压级明显增加,其中方型凸起的影响比斜坡型凸起的影响更大,模型背面凸起结构对表面脉动压力测量的影响沿着展向逐渐增加.分析认为模型背面凸起结构影响表面脉动压力测量有三种可能途径:①模型背面大尺度凸起改变模型流场波系,从而影响模型表面流动;②模型背面非定常流动产生的噪声通过固壁传播至脉动压力传感器,影响测量结果;③模型周围非定常非对称流动给模型施加一个非定常的作用力,使得模型振荡,从而影响表面脉动压力测量.

     

  • 图  1  模型示意图和测点位置图

    Figure  1.  Diagram of measurement points

    图  2  模型结构尺寸图

    Figure  2.  Model schematics

    图  3  FD-07风洞

    Figure  3.  FD-07 wind tunnel

    图  4  PrmsSPL测量值

    Figure  4.  Measured Prms and SPL

    图  5  能谱分布信息

    Figure  5.  Power spectral density distributions

    图  6  模型表面流场区域示意图

    Figure  6.  Hypersonic flow over the model surface

    图  7  实验纹影照片

    Figure  7.  Schlieren images

    表  1  实验来流参数

    Table  1.   Test condition

    Ma P0/MPa T0/K Re/(1/m)
    6 1 464 107
    下载: 导出CSV
  • [1] 余平, 段毅, 尘军. 高超声速飞行的若干气动问题[J]. 航空学报, 2015, 36(1): 7-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501002.htm

    Yu P, Duan Y, Chen J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 7-23(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501002.htm
    [2] 佘振苏, 陈曦, 毕卫涛, 等. 从根子上实现气动计算湍流模型的突破[J]. 中国基础科学, 2013(4): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201304001.htm

    She Z S, Chen X, Bi W T, et al. Breakthrough in modeling turbulence for aerodynamics computations[J]. China Basic Science, 2013(4): 3-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201304001.htm
    [3] 叶友达. 高超声速空气动力学研究进展与趋势[J]. 科学通报, 2015, 60(12): 1095-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201512007.htm

    Ye Y D. Advances and prospects in hypersonic aerodyna-mics[J]. Chinese Science Bulletin, 2015, 60(12): 1095-1103(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201512007.htm
    [4] Reshotko E. Transition issues for atmospheric entry[J]. Journal of Spacecraft and Rockets, 2008, 45(2): 161-164. doi: 10.2514/1.29777
    [5] 周恒, 张涵信. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J]. 空气动力学学报, 2017, 35(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201702001.htm

    Zhou H, Zhang H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2): 151-155(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201702001.htm
    [6] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. doi: 10.7638/kqdlxxb-2017.0030

    Chen J Q, Tu G H, Zhang Y F, et al. Hypersonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337(in Chinese). doi: 10.7638/kqdlxxb-2017.0030
    [7] 杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报, 2018, 36(2): 183-195. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802004.htm

    Yang W B, Shen Q, Zhu D H, et al. Tendency and currentstatus of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2): 183-195(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802004.htm
    [8] Schneider S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft and Rockets, 1999, 36(1): 8-20. doi: 10.2514/2.3428
    [9] Morkovin M V, Reshotko E, Herbert T. Transition in open flow systems a reassessment[J]. Bulletin of the American Physical Society, 1994, 39(9): 1882. http://ci.nii.ac.jp/naid/10018477068
    [10] Chen F J. Boundary-layer transition extent measurements on a cone and flat plate at Mach 3.5[R]. AIAA 1993-0342, 1993.
    [11] Fisher D F, Dougherty N S. Flight and wind-tunnel correlation of boundary-layer transition on the AEDC transition cone[R]. NASA-TM-84902, 1982.
    [12] Harvey W D, Bobbitt P J. Some anomalies between wind tunnel and flight transition results[R]. AIAA 1981-1225, 1981.
    [13] King R A. Three-dimensional boundary-layer transition on a cone at mach 3.5[J]. Experiments in Fluids, 1992, 13(5): 305-314.
    [14] Stetson K F. Mach 6 experiments of transition on a cone at angle of attack[J]. Journal of Spacecraft, 1982, 19(5): 397-403. doi: 10.2514/3.62276
    [15] Pate S R. Supersonic boundary-layer transition: Effects of roughness and freestream disturbances[J]. AIAA Jour-nal, 1971, 9(5): 797-803. doi: 10.2514/3.6278
    [16] Bounitch A, Lewis D R, Lafferty J F. Improved measurements of "Tunnel Noise" pressure fluctuations in the AEDC hypervelocity wind tunnel No. 9[R]. AIAA 2011-1200, 2011.
    [17] Wagner A, Schülein E, Petervari R, et al. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation[J]. Journal of Fluid Mechanics, 2018, 842: 495-531. http://smartsearch.nstl.gov.cn/paper_detail.html?id=1cc1e4b053efbca0a640db816f31f081
    [18] Willems S, Gülhan A, Juliano T J, et al. Laminar to turbulent transition on the HIFiRE-1 cone at Mach 7 and high angle of attack[R]. AIAA 2014-0428, 2014.
    [19] 刘小林, 易仕和, 牛海波, 等. 高超声速条件下7°直圆锥边界层转捩实验研究[J]. 物理学报, 2018, 67(17): 174701. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201817020.htm

    Liu X L, Yi S H, Niu H B, et al. Experimental investigation of the hypersonic boundary layer transition on a 7°straight cone[J]. Acta Physica Sinica, 2018, 67(17): 174701(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201817020.htm
    [20] Kovasznay L S. The hot-wire anemometer in supersonic flow[J]. Journal of the Aeronautical Sciences, 1950, 17(9): 565-572. doi: 10.2514/8.1725
    [21] Logan P. Modal analysis of hot-wire measurements in supersonic turbulence[R]. AIAA 1988-0423, 1988.
    [22] Duan L, Choudhari M M, Chou A, et al. Characteri-zation of freestream disturbances in conventional hyperso-nic wind tunnels[R]. AIAA 2018-0347, 2018.
    [23] Knauss H, Roediger T, Bountin D A, et al. Novel sensor for fast heat-flux measurements[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 255-265. doi: 10.2514/1.32011?mi=8f0xx2&af=R&contents=articlesChapters&countTerms=true&field1=Contrib&target=default&text1=Boris%2C+S
    [24] Roediger T, Knauss H, Estorf M, et al. Hypersonic instability waves measured using fast-response heat-flux gauges[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 266-273. doi: 10.2514/1.37026
    [25] Salyer T R. Laser differential interferometry for supersonic blunt body receptivity experiments[D]. West Lafayette, IN: Purdue University, 2002.
    [26] Parziale N J, Shepherd J E, Hornung H G. Differential interferometric measurement of instability in a hypervelo-city boundary layer[J]. AIAA Journal, 2013, 51(3): 750-753. doi: 10.2514/1.J052013
    [27] 陈星, 文帅, 潘俊杰, 等. 三角翼标模摩擦阻力测量的高超声速风洞实验与数据确认[J]. 气体物理, 2017, 2(2): 54-63. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=456995e4-725b-4853-82ac-fc2222ed8cbe

    Chen X, Wen S, Pan J J, et al. Delta wing model skin friction measurement test and data confirming in hyperso-nic wind tunnel[J]. Physics of Gases, 2017, 2(2): 54-63(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=456995e4-725b-4853-82ac-fc2222ed8cbe
    [28] 韩曙光, 贾广森, 文帅, 等. 磷光热图技术在常规高超声速风洞热环境实验中的应用[J]. 气体物理, 2017, 2(4): 56-63. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3a573e20-71d2-4b60-af60-3d2ae1ddad37

    Han S G, Jia G S, Wen S, et al. Heat transfer measurement using a quantitative phosphor thermography system in blowdown hypersonic facility[J]. Physics of Gases, 2017, 2(4): 56-63(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3a573e20-71d2-4b60-af60-3d2ae1ddad37
    [29] 解少飞. 高超声速激波/转捩边界层干扰的现象、机理和效应研究[D]. 北京: 中国航天空气动力技术研究院, 2015.

    Xie S F. Study of phenomenon, mechanism and effect of hypersonic shock wave/transitional boundary layer inter-action[D]. Beijing: China Academy of Aerospace Aerodynamics, 2015(in Chinese).
    [30] 纪锋, 解少飞, 沈清. 高超声速1 MHz高频脉动压力测试技术及其应用[J]. 空气动力学学报, 2016, 34(5): 587-591. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605007.htm

    Ji F, Xie S F, Shen Q. Hypersonic high frequency (1 MHz) fluctuation pressure testing technology and application[J]. Acta Aerodynamica Sinica, 2016, 34(5): 587-591(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605007.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  3888
  • HTML全文浏览量:  101
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 修回日期:  2020-07-02
  • 发布日期:  2021-05-20
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回