Experimental Study of the Wedge Model Structure Effect on the Pressure Fluctuation Measurement
-
摘要: 高超声速边界层转捩与湍流研究是当前空气动力学研究的一个热门领域,脉动压力测量技术在高超声速风洞背景噪声测量和边界层内扰动波发展研究实验中得到了广泛应用.脉动压力传感器由于灵敏度高、测量频率范围宽,其测量结果受多方面因素影响.文章以尖楔模型为研究对象,在常规高超声速风洞中开展了模型背面凸起对表面脉动压力测量结果影响的实验研究,获得了3种背面结构(方型凸起、斜坡型凸起和无凸起)模型表面脉动压力信息,对比发现模型背面方型凸起和斜坡型凸起使得模型表面声压级明显增加,其中方型凸起的影响比斜坡型凸起的影响更大,模型背面凸起结构对表面脉动压力测量的影响沿着展向逐渐增加.分析认为模型背面凸起结构影响表面脉动压力测量有三种可能途径:①模型背面大尺度凸起改变模型流场波系,从而影响模型表面流动;②模型背面非定常流动产生的噪声通过固壁传播至脉动压力传感器,影响测量结果;③模型周围非定常非对称流动给模型施加一个非定常的作用力,使得模型振荡,从而影响表面脉动压力测量.Abstract: The investigation on transition and turbulence in the hypersonic boundary layer is an attractive region in aerodynamics at present, and the technique of measuring the pressure fluctuation is widely used in the experimental investigation on the background noise of the hypersonic wind tunnel and the development of the disturbing waves in the boundary layer. The measurement from the pressure fluctuation probe could be affected by many factors because of its high sensitivity and wide frequency range. The wedge model was considered as the investigation object and the experiment on the effect of the protuberance the measurements of surface pressure fluctuation was conducted in the conventional hypersonic wind tunnel. The information of surface pressure fluctuation based on three back structures, back such as square protuberance, slope protuberance and none of protuberance, was obtained. It is shown that the noise level remarkably increases in the cases of the square and slope protuberances and the effect of the square protuberance on the noise level was much larger than that of the slop protuberance. Furthermore, the effect of the back protuberances gradually increases in the spanwise direction of the model. Further analyses shows that there are three probable effect mechanism of model protuberance to the pressure fluctuation measurement, firstly, the protuberance on the model back surface change the shock waves, and then affect the flow field on the measurement surface. Secondly, the unsteady flow caused by the protuberance generate aerodynamic noise, the noise propagates to the transducer along the model. Thirdly. the unsteady asymmetric pressure caused by the protuberance make the model vibration, and then affect the pressure fluctuation measurement.
-
Key words:
- pressure fluctuation /
- model bulge /
- hypersonic /
- unsteady flow /
- noise
-
表 1 实验来流参数
Table 1. Test condition
Ma P0/MPa T0/K Re/(1/m) 6 1 464 107 -
[1] 余平, 段毅, 尘军. 高超声速飞行的若干气动问题[J]. 航空学报, 2015, 36(1): 7-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501002.htmYu P, Duan Y, Chen J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 7-23(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501002.htm [2] 佘振苏, 陈曦, 毕卫涛, 等. 从根子上实现气动计算湍流模型的突破[J]. 中国基础科学, 2013(4): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201304001.htmShe Z S, Chen X, Bi W T, et al. Breakthrough in modeling turbulence for aerodynamics computations[J]. China Basic Science, 2013(4): 3-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201304001.htm [3] 叶友达. 高超声速空气动力学研究进展与趋势[J]. 科学通报, 2015, 60(12): 1095-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201512007.htmYe Y D. Advances and prospects in hypersonic aerodyna-mics[J]. Chinese Science Bulletin, 2015, 60(12): 1095-1103(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201512007.htm [4] Reshotko E. Transition issues for atmospheric entry[J]. Journal of Spacecraft and Rockets, 2008, 45(2): 161-164. doi: 10.2514/1.29777 [5] 周恒, 张涵信. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J]. 空气动力学学报, 2017, 35(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201702001.htmZhou H, Zhang H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2): 151-155(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201702001.htm [6] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. doi: 10.7638/kqdlxxb-2017.0030Chen J Q, Tu G H, Zhang Y F, et al. Hypersonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337(in Chinese). doi: 10.7638/kqdlxxb-2017.0030 [7] 杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报, 2018, 36(2): 183-195. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802004.htmYang W B, Shen Q, Zhu D H, et al. Tendency and currentstatus of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2): 183-195(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802004.htm [8] Schneider S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft and Rockets, 1999, 36(1): 8-20. doi: 10.2514/2.3428 [9] Morkovin M V, Reshotko E, Herbert T. Transition in open flow systems a reassessment[J]. Bulletin of the American Physical Society, 1994, 39(9): 1882. http://ci.nii.ac.jp/naid/10018477068 [10] Chen F J. Boundary-layer transition extent measurements on a cone and flat plate at Mach 3.5[R]. AIAA 1993-0342, 1993. [11] Fisher D F, Dougherty N S. Flight and wind-tunnel correlation of boundary-layer transition on the AEDC transition cone[R]. NASA-TM-84902, 1982. [12] Harvey W D, Bobbitt P J. Some anomalies between wind tunnel and flight transition results[R]. AIAA 1981-1225, 1981. [13] King R A. Three-dimensional boundary-layer transition on a cone at mach 3.5[J]. Experiments in Fluids, 1992, 13(5): 305-314. [14] Stetson K F. Mach 6 experiments of transition on a cone at angle of attack[J]. Journal of Spacecraft, 1982, 19(5): 397-403. doi: 10.2514/3.62276 [15] Pate S R. Supersonic boundary-layer transition: Effects of roughness and freestream disturbances[J]. AIAA Jour-nal, 1971, 9(5): 797-803. doi: 10.2514/3.6278 [16] Bounitch A, Lewis D R, Lafferty J F. Improved measurements of "Tunnel Noise" pressure fluctuations in the AEDC hypervelocity wind tunnel No. 9[R]. AIAA 2011-1200, 2011. [17] Wagner A, Schülein E, Petervari R, et al. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation[J]. Journal of Fluid Mechanics, 2018, 842: 495-531. http://smartsearch.nstl.gov.cn/paper_detail.html?id=1cc1e4b053efbca0a640db816f31f081 [18] Willems S, Gülhan A, Juliano T J, et al. Laminar to turbulent transition on the HIFiRE-1 cone at Mach 7 and high angle of attack[R]. AIAA 2014-0428, 2014. [19] 刘小林, 易仕和, 牛海波, 等. 高超声速条件下7°直圆锥边界层转捩实验研究[J]. 物理学报, 2018, 67(17): 174701. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201817020.htmLiu X L, Yi S H, Niu H B, et al. Experimental investigation of the hypersonic boundary layer transition on a 7°straight cone[J]. Acta Physica Sinica, 2018, 67(17): 174701(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201817020.htm [20] Kovasznay L S. The hot-wire anemometer in supersonic flow[J]. Journal of the Aeronautical Sciences, 1950, 17(9): 565-572. doi: 10.2514/8.1725 [21] Logan P. Modal analysis of hot-wire measurements in supersonic turbulence[R]. AIAA 1988-0423, 1988. [22] Duan L, Choudhari M M, Chou A, et al. Characteri-zation of freestream disturbances in conventional hyperso-nic wind tunnels[R]. AIAA 2018-0347, 2018. [23] Knauss H, Roediger T, Bountin D A, et al. Novel sensor for fast heat-flux measurements[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 255-265. doi: 10.2514/1.32011?mi=8f0xx2&af=R&contents=articlesChapters&countTerms=true&field1=Contrib&target=default&text1=Boris%2C+S [24] Roediger T, Knauss H, Estorf M, et al. Hypersonic instability waves measured using fast-response heat-flux gauges[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 266-273. doi: 10.2514/1.37026 [25] Salyer T R. Laser differential interferometry for supersonic blunt body receptivity experiments[D]. West Lafayette, IN: Purdue University, 2002. [26] Parziale N J, Shepherd J E, Hornung H G. Differential interferometric measurement of instability in a hypervelo-city boundary layer[J]. AIAA Journal, 2013, 51(3): 750-753. doi: 10.2514/1.J052013 [27] 陈星, 文帅, 潘俊杰, 等. 三角翼标模摩擦阻力测量的高超声速风洞实验与数据确认[J]. 气体物理, 2017, 2(2): 54-63. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=456995e4-725b-4853-82ac-fc2222ed8cbeChen X, Wen S, Pan J J, et al. Delta wing model skin friction measurement test and data confirming in hyperso-nic wind tunnel[J]. Physics of Gases, 2017, 2(2): 54-63(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=456995e4-725b-4853-82ac-fc2222ed8cbe [28] 韩曙光, 贾广森, 文帅, 等. 磷光热图技术在常规高超声速风洞热环境实验中的应用[J]. 气体物理, 2017, 2(4): 56-63. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3a573e20-71d2-4b60-af60-3d2ae1ddad37Han S G, Jia G S, Wen S, et al. Heat transfer measurement using a quantitative phosphor thermography system in blowdown hypersonic facility[J]. Physics of Gases, 2017, 2(4): 56-63(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3a573e20-71d2-4b60-af60-3d2ae1ddad37 [29] 解少飞. 高超声速激波/转捩边界层干扰的现象、机理和效应研究[D]. 北京: 中国航天空气动力技术研究院, 2015.Xie S F. Study of phenomenon, mechanism and effect of hypersonic shock wave/transitional boundary layer inter-action[D]. Beijing: China Academy of Aerospace Aerodynamics, 2015(in Chinese). [30] 纪锋, 解少飞, 沈清. 高超声速1 MHz高频脉动压力测试技术及其应用[J]. 空气动力学学报, 2016, 34(5): 587-591. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605007.htmJi F, Xie S F, Shen Q. Hypersonic high frequency (1 MHz) fluctuation pressure testing technology and application[J]. Acta Aerodynamica Sinica, 2016, 34(5): 587-591(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605007.htm -