主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新建高焓激波风洞Ma=8飞行模拟条件的实现与超燃实验

卢洪波 陈星 谌君谋 易翔宇 李辰 张冰冰 纪锋 毕志献 沈清

卢洪波, 陈星, 谌君谋, 易翔宇, 李辰, 张冰冰, 纪锋, 毕志献, 沈清. 新建高焓激波风洞Ma=8飞行模拟条件的实现与超燃实验[J]. 气体物理, 2019, 4(5): 13-24. doi: 10.19527/j.cnki.2096-1642.0782
引用本文: 卢洪波, 陈星, 谌君谋, 易翔宇, 李辰, 张冰冰, 纪锋, 毕志献, 沈清. 新建高焓激波风洞Ma=8飞行模拟条件的实现与超燃实验[J]. 气体物理, 2019, 4(5): 13-24. doi: 10.19527/j.cnki.2096-1642.0782
LU Hong-bo, CHEN Xing, SHEN Jun-mou, YI Xiang-yu, LI Chen, ZHANG Bing-bing, JI Feng, BI Zhi-xian, SHEN Qing. Flight Condition Achievement of Mach Number 8 in a New Shock Tunnel of CAAA and its Scramjet Experimental Investigation[J]. PHYSICS OF GASES, 2019, 4(5): 13-24. doi: 10.19527/j.cnki.2096-1642.0782
Citation: LU Hong-bo, CHEN Xing, SHEN Jun-mou, YI Xiang-yu, LI Chen, ZHANG Bing-bing, JI Feng, BI Zhi-xian, SHEN Qing. Flight Condition Achievement of Mach Number 8 in a New Shock Tunnel of CAAA and its Scramjet Experimental Investigation[J]. PHYSICS OF GASES, 2019, 4(5): 13-24. doi: 10.19527/j.cnki.2096-1642.0782

新建高焓激波风洞Ma=8飞行模拟条件的实现与超燃实验

doi: 10.19527/j.cnki.2096-1642.0782
详细信息
    作者简介:

    卢洪波(1985-)男, 高工, 博士, 主要研究方向为高超声速吸气式推进实验技术.E-mail:finlhb_0605@163.com

    通讯作者:

    陈星(1979-)男, 研究员, 硕士, 主要研究方向为激波风洞技术及气动热测量技术.E-mail:chenxing0234@sina.com

  • 中图分类号: V211.7

Flight Condition Achievement of Mach Number 8 in a New Shock Tunnel of CAAA and its Scramjet Experimental Investigation

  • 摘要: 针对高Mach数超燃冲压发动机实验能力空缺问题,基于航天十一院新建的FD-21高能脉冲风洞,进行了Ma=8超燃飞行条件的模拟能力设计与调试,获得了总焓2.9 MJ/kg、总压11.01 MPa实验条件,实现了Ma=8、高度31 km飞行条件的风洞模拟.在此基础上,研发了匹配的氢燃料供应及喷注时序控制系统,设计了超燃冲压发动机模型,开展了超燃冲压发动机模型自由射流应用性风洞实验,获得了氢气燃料与空气、氮气超声速气流耦合流动作用下的实验模型壁面压力数据.在当量比近似一致条件下,空气来流对应的燃烧室壁面压力明显高于氮气来流情况,表明氢气在1 ms有效实验时间内完成了与超声速空气来流的混合、点火与燃烧,获得燃烧释热特性,确认了在FD-21高能脉冲风洞开展高Mach数超燃实验是切实可行的,为后续研究奠定了良好的基础.

     

  • 图  1  FD-21高能脉冲风洞主体结构

    Figure  1.  Sketch of FD-21 high-energy impulse wind tunnel

    图  2  FD-21风洞运行过程

    Figure  2.  Operation process of FD-21 shock tunnel

    图  3  FD-21高能脉冲风洞的模拟能力

    Figure  3.  Simulation ability of FD-21 shock tunnel

    图  4  压缩管及激波管上的测点位置示意图

    Figure  4.  Measure porthole locations on compression and shock tubes(not scale)

    图  5  激波管各测点压力随时间变化情况

    Figure  5.  Variation of pressure distributed in shock tube with time

    图  6  激波Mach数在激波管内的变化

    Figure  6.  Distributions of shock Mach number in shock tube

    图  7  激波管上S9测点的压力随时间变化

    Figure  7.  Variation of pressure at S9 with time

    图  8  激波管上S10测点的压力随时间变化

    Figure  8.  Variation of pressure at S10 with time

    图  9  实验模型及压力、热电偶测点

    Figure  9.  Scramjet test article with pressure and thermocouple porthole

    图  10  燃料供应系统

    Figure  10.  Fuel supply system for FD-21 shock tunnel

    图  11  喷注时序控制系统示意图

    Figure  11.  Sketch of time sequencing control system

    图  12  基于Tannehill平衡空气模型及k-ωSST湍流模型, 轴对称数值计算所得Φ=1.2 m的喷管出口参数分布

    Figure  12.  Axial parameters distributions at the FD-21 Φ= 1.2 m nozzle exit from CFD with Tannehill equilibrium air model and k-ω SST turbulence model

    图  13  空气来流条件下, 总压、模型壁面静压及氢气喷注前室压力数据曲线(65车次, 总压Pt=10.96 MPa, PH2 -inj=0.698 MPa, 当量比ϕ=0.71)

    Figure  13.  Variation of total pressure, model wall pressure and hydrogen injection pressure with time for shot 65 of air inflow, where Pt=10.96 MPa, PH2 -inj=0.698 MPa, ϕ=0.71

    图  14  氮气来流条件下, 总压、模型壁面静压及氢气喷注前室压力数据曲线(67车次, 总压Pt=10.36 MPa, PH2-inj=0.625 MPa, 当量比ϕ=0.69)

    Figure  14.  Variation of total pressure, model wall pressure and hydrogen injection pressure with time for shot 67 of nitrogen inflow, where Pt=10.36 MPa, PH2-inj=0.625 MPa, ϕ=0.69

    图  15  空气(65车次)/氮气(67车次)来流条件下, 实验及数值所得模型壁面静压沿程分布

    Figure  15.  Time-average wall pressure distributions along the centre line of injection-side wall under the condition of air (slot 65) and nitrogen(slot 67), together with numerical results

    表  1  世界主要高焓脉冲风洞设备参数

    Table  1.   Simulation parameters of worldwide high-enthalpy impulse wind tunnels

    wind tunnel affiliation driver technique driver tube driven tube nozzle exit diameter/m Vmax/
    (km/s)
    Masimulated tef/ms hmax/
    (MJ/kg)
    L/m D/m L/m D/m
    T4 UQ free-piston 26 0.229 10 0.076 0.388 ~5.5 4~10 ≥1 15
    T5 Caltech 30 0.3 12 0.09 0.314 ~6.3 4~7 ≥1 20
    HIEST JAXA 42 0.6 17 0.18 0.88 ~7 8~16 ≥2 25
    HEG DLR 33 0.55 17 0.15 1.2 ~7 6~10 1~6 25
    FD-21 CAAA 75 0.668 34 0.29 1.2/2.0 ~7 10~16 2~10 25
    LENS Ⅰ GASL heated light gas 7.62 0.28 18.3 0.203 1.5 ~4.6 6~22 5~18 10
    LENS Ⅱ 18.3 0.61 30.5 0.61 1.8 ~2.7 3~10 30~100 4
    JF-12 IMCAS detonation 99 0.4 89 0.72 2.5 ~3 5~9 ~100 3.5
    下载: 导出CSV

    表  2  模拟弹道点Ma=8, H=31 km对应的风洞运行参数

    Table  2.   Operation parameters of FD-21 shock tunnel to simulate flight conditions of Ma=8 and H=31 km

    compression tube with helium and argon shock tube with air
    ωHe ωAr P4i/kPa T4i/K P1/kPa T1/K
    0.1 0.9 30 300 61 300
    下载: 导出CSV

    表  3  激波管上压电传感器安装位置

    Table  3.   Locations of piezoelectric sensors on shock tube

    marks location/m
    S0 0.72
    S1 4
    S2 8
    S4 16
    S6 23.99
    S7 27.99
    S8 31.99
    S9 33.19
    S10 33.96
    下载: 导出CSV

    表  4  激波管末端入射激波Mach数及模拟总压

    Table  4.   Shock Mach number and simulated total pressure at the end of shock tube

    test No. Mas between S7 and S8 error PtS10/MPa error
    69 5.13 3.62% 9.64 -4.48%
    70 4.90 -1.09% 9.96 -1.30%
    71 4.90 -1.05% 10.54 4.44%
    72 5.12 3.52% 10.49 3.95%
    73 4.74 -4.26% 9.7 -3.88%
    74 4.91 -0.73% 10.22 1.27%
    average 4.95 10.09
    下载: 导出CSV
  • [1] Tsien H S, Beilock M. Heat source in a uniform flow[J]. Journal of Aeronautical Sciences, 1949, 16(12):756. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_611157fc15a22619f3d441257b991455
    [2] Heiser W H, Pratt D T. Hypersonic airbreathing propul-sion[M]. Washington: American Institute of Aeronautics and Astronautics, Inc., 1994.
    [3] Curran E T, Murthy S N. Scramjet propulsion[M]. Reston:American Institute of Aeronautics and Astronau-tics, 2000.
    [4] 王振国, 梁剑寒, 丁猛, 等.高超声速飞行器动力系统研究进展[J].力学进展, 2009, 39(6):716-739. Wang Z G, Liang J H, Ding M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6):716-739(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jmsj201802253
    [5] 蔡国飙, 徐大军.高超声速飞行器技术[M].北京:科学出版社, 2012. Cai G B, Xu D J. Hypersonic technology[M]. Beijing:The Science Publishing Company, 2012(in Chinese).
    [6] 俞刚, 范学军.超声速燃烧与高超声速推进[J].力学进展, 2013, 43(5):449-471.Yu G, Fan X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5):449-471(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201305001
    [7] Lu F K, Marren D E. Advanced hypersonic test facilities[M]. Reston:Progress in Astronautics and Aeronautics, 2002:198.
    [8] Anderson G Y. Combustion in high-speed flow, chapter hypersonic combustion-status and directions[M]. ICASE/LAaRC Interdisciplinary Series in Science and Enginee-ring. Kluwer Academic Publishers, 1994.
    [9] Hodge J S, Harvin S F. Test capability and recent experiences in the NASA Langley 8-foot high temperature tunnel[R]. AIAA 2000-2646, 2000.
    [10] Kidd III F G, Narayanaswamy V, Danehy P M, et al. Characterization of the NASA Langley arc heated scramjet test facility using NO PLIF[R]. AIAA 2014-2652, 2014.
    [11] Hiraiwa T, Ito K, Sato S, et al. Recent progress in scramjet/combined cycle engines at JAXA, Kakuda space center[J]. Acta Astronautica, 2008, 63(5/6):565-574.
    [12] Dufrene A, Maclean M, Wadhams T, et al. Extension of LENS shock tunnel test times and lower Mach number capability[R]. AIAA 2015-2017, 2015.
    [13] Igra O, Seiler F. Experimental methods of shock wave research[M]. New York:Springer, 2016.
    [14] Stalker R J, Pall A, Mee D J, et al. Scramjets and shock tunnels-The Queensland experience[J]. Progress in Aerospace Sciences, 2005, 41(6):471-513. doi: 10.1016/j.paerosci.2005.08.002
    [15] Yu H R. Oxyhydrogen combustion and detonation driven shock tube[J]. Acta Mechanica Sinica, 1999, 15(2):97-107. doi: 10.1007/BF02485874
    [16] Jiang Z L, Yu H R. Experiments and development of long-test-duration hypervelocity detonation-driven shock tunnel (LHDst)[R]. AIAA 2014-1012, 2014.
    [17] 俞鸿儒.大幅度延长激波风洞试验时间[J].中国科学:物理学力学天文学, 2015, 45(9):094701. Yu H R. A big increase in shock tunnel test times[J]. Scientia Sinica Physica, Mechanica & Astronomica Astron, 2015, 45(9):094701(in Chinese). http://d.old.wanfangdata.com.cn/Conference/8678191
    [18] Shen J M, Ma H D, Li C, et al. Initial measurements of a 2m Mach-10-free-piston shock tunnel at CAAA[C]. The 31st International Symposium on Shock Waves Nagoya, Japan, 2017.
    [19] Bi Z X, Zhang B B, Chen X, et al. Experiments and computations on the compression process in the free piston shock tunnel[C]. 5th International Conference on Experimental Fluid Mechanics (ICEFM 2018 Munich), Munich, Germany, 2018.
    [20] Robinson M J, Mee D J, Paull A. Scramjet lift, thrust and pitching-moment characteristics measured in a shock tunnel[J]. Journal of Propulsion and Power, 2006, 22(1):85-95. doi: 10.2514/1.15978
    [21] McGilvray M, Kirchhartz R, Jazra T. Comparison of Mach 10 scramjet measurements from different impulse facilities[J]. AIAA Journal, 2010, 48(8):1647-1651. doi: 10.2514/1.J050025
    [22] McGilvray M, Morgan R G, Jacobs P A. Scramjet experiments in an expansion tunnel:evaluated using a quasi-steady analysis technique[J]. AIAA Journal, 2010, 48(8):1635-1646. doi: 10.2514/1.J050024
    [23] Takahashi M, Sunami T, Hideyuki T, et al. Performance characteristics of a scramjet engine at Mach 10 to 15 flight condition[R]. AIAA 2005-3350, 2005.
    [24] Itoh K, Ueda S, Tanno H, et al. Hypersonic aerothermodynamic and scramjet research using high enthalpy shock tunnel[J]. Shock Waves, 2002, 12(2):93-98. doi: 10.1007/s00193-002-0147-0
    [25] Takahashi M, Komuro T, Sato K, et al. Performance characteristics of scramjet engine with different combustor shapes at hypervelocity condition over Mach 10 flight[R]. AIAA 2007-5395, 2007.
    [26] Laurence S J, Karl S, Schramm M J, et al. Transient fluid-combustion phenomena in a model scramjet[J]. Journal of Fluid Mechanics, 2013, 722:85-120. doi: 10.1017/jfm.2013.56
    [27] Schramm M J, Hannemann K, Karl S, et al. Ground testing synthesis of the LAPCAT II small scale flight experiment configuration scramjet flow path[R]. AIAA 2015-3627, 2015.
    [28] Hannemann K, Schramm J M, Karl S, et al. Enhance-ment of free flight force measurement technique for scramjet engine shock tunnel testing[R]. AIAA 2017-2235, 2017.
    [29] Rogers R C, Hass N E. Scramjet development tests supporting the Mach 10 flight of the X-43[R]. AIAA 2005-3351, 2005.
    [30] Ferlemann S M, McClinton C R, Rock K E, el al. Hyper-X Mach 7 Scramjet design, ground test and flight results[R]. AIAA 2005-2322, 2005.
    [31] Ferlemann P G. Hyper-X Mach 10 scramjet preflight predictions and flight data[R]. AIAA 2005-3352, 2005.
    [32] 王培勇, 陈明, 邢菲, 等. Hyshot超燃冲压发动机的CFD数值模模拟[J].航空动力学报, 2014, 29(5):1020-1028. Wang P Y, Chen M, Xing F, et al. CFD numerical simulation of Hyshot scramjet[J]. Journal of Aerospace Power, 2014, 29(5):1020-1028(in Chinese). http://d.old.wanfangdata.com.cn/Thesis/Y2343979
    [33] 周建兴, 汪颖.高马赫数超燃冲压发动机性能数值研究[J].推进技术, 2014, 35(4):433-441. Zhou J X, Wang Y. Numerical investigation on performance of a high Mach number Scramjet[J]. Journal of Propulsion Technology, 2014, 35(4):433-441(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201404001
    [34] 张时空, 李江, 黄志伟, 等.高马赫数来流超燃冲压发动机燃烧流场分析[J].宇航学报, 2017, 38(1):80-88. Zhang S, Li J, Huang Z W, et al. Combustion flow field analysis of a scramjet engine[J]. Journal of Astronautics, 2017, 38(1):80-88(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhxb201701011
    [35] 钟萍, 孙宗祥, 傅邦杰, 等.高超声速流动模拟需求及地面试验能力分析[J].飞航导弹, 2012(3):20-26. Zhong P, Sun Z X, Fu B J, et al. Simulation requirements and experimental techniques level of hypersonic ground facilities[J]. Journal of Aerial Missiles, 2012(3):20-26(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fhdd201203013
    [36] 朱浩, 江海南, 张冰冰.自由活塞激波风洞的入射激波衰减[J].航空学报, 2017, 38(12):39-47.Zhu H, Jiang H N, Zhang B B. Attenuation of incident shock waves in free piston shock tunnels[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):39-47(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201712004
    [37] Li C, Sun R M, Wang Y D, et al. Reliability improvement of the piston compressor in FD-21 free-piston shock tunnel[C]. 5th International Conference on Experimental Fluid Mechanics, Munich, Germany, 2018.
    [38] Zhang B B, Zhu H, Chen X, et al. Experimental study of the compression process in a free piston shock tunnel FD-21[C]. Proceedings of the 8th International Confer-ence on Fluid Mechanics, Sendai: Tohoku Universi-ty, 2018.
    [39] 孙日明, 李辰, 陈星.高能脉冲风洞自由活塞速度测量系统[C]. CSTAM2018-P18-B04, 第十八届全国激波与激波管学术会议, 北京: 中科院力学所, 2018.Sun R M, Li C, Chen X. Velocity measure system of free-piston in FD-21 free-piston shock tunnel[C]. The 18th National Conference of Shock Wave and Shock Tube, Beijing: IMCAS, 2018(in Chinese).
    [40] 易翔宇, 陈星, 毕志献, 等.自由活塞激波风洞压缩管-激波管流动分析及4000 K状态调试[C].首届中国空气动力学大会, 绵阳: 中国空气动力研究与发展中心, 2018.Yi X Y, Chen X, Bi Z X, et al. Flow characteristics of compression and shock tubes in the free-piston driven shock tunnel and commissioning of 4000 K simulation conditions[C]. The 1st Conference of China Aerodyna-mics, Mianyang: CARDC, 2018(in Chinese).
    [41] Schranmm J M, Karl S, Hannemann K, et al. Ground testing of the Hyshot II scramjet configuration in HEG[R]. AIAA 2008-2547, 2008.
    [42] Laurence S J, Karl S, Schramm M J, et al. Transient fluid-combustion phenomena in a model scramjet[J]. Jour-nal of Fluid Mechanics, 2013, 722:85-120. doi: 10.1017/jfm.2013.56
    [43] Tannehill J C, Mohling R A. Development of equilibrium air computer programs suitable for numerical computation using time-dependent or shock-capturing methods[M]. For sale by the National Technical Information Service, 1972.
    [44] Tannehill J C, Mugge P H. Improved curve fits for the thermodynamic properties of equilibrium air suitable for numerical computation using time-dependent or shock-capturing methods[R]. NSAS Report CR-2470, 1974.
    [45] Rogers R C, Weidner E H. Scramjet fuel-air mixing establishment in a pulse facility[J]. Journal of Propulsion and Power, 1993, 9(1):127-133. doi: 10.2514/3.11494
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  131
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 修回日期:  2019-08-21
  • 发布日期:  2019-09-20
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回