主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空低压低温环境航空发动机燃烧室熄火特性实验

陈光明 王学德 林冰轩

陈光明, 王学德, 林冰轩. 高空低压低温环境航空发动机燃烧室熄火特性实验[J]. 气体物理, 2019, 4(5): 43-51. doi: 10.19527/j.cnki.2096-1642.0763
引用本文: 陈光明, 王学德, 林冰轩. 高空低压低温环境航空发动机燃烧室熄火特性实验[J]. 气体物理, 2019, 4(5): 43-51. doi: 10.19527/j.cnki.2096-1642.0763
CHEN Guang-ming, WANG Xue-de, LIN Bing-xuan. Experimental Study on Blowout Characteristics of Aeroengine Combustor under High Altitude Low Pressure and Low Temperature Condition[J]. PHYSICS OF GASES, 2019, 4(5): 43-51. doi: 10.19527/j.cnki.2096-1642.0763
Citation: CHEN Guang-ming, WANG Xue-de, LIN Bing-xuan. Experimental Study on Blowout Characteristics of Aeroengine Combustor under High Altitude Low Pressure and Low Temperature Condition[J]. PHYSICS OF GASES, 2019, 4(5): 43-51. doi: 10.19527/j.cnki.2096-1642.0763

高空低压低温环境航空发动机燃烧室熄火特性实验

doi: 10.19527/j.cnki.2096-1642.0763
基金项目: 

国家自然科学基金 91541120

国家自然科学基金 91641204

详细信息
    作者简介:

    陈光明(1971-)男, 硕士, 副教授, 主要研究方向为航空发动机性能验证.E-mail:1064973238@QQ.com

  • 中图分类号: V263.4+7

Experimental Study on Blowout Characteristics of Aeroengine Combustor under High Altitude Low Pressure and Low Temperature Condition

  • 摘要: 航空发动机高空熄火是非常严重的安全威胁,高空燃烧稳定性与可靠再点火是航空发动机燃烧室的普遍要求.文章介绍了高空低压低温条件下航空发动机燃烧室模拟实验设备方案和调试结果,实现了对地面状态到高空10 km处环境条件的模拟.研究表明,随着高度增加,贫油熄火极限油气比不断增大.地面状态的贫油熄火油气比为0.016,高空10 km条件下,熄火油气比为0.071,增大3倍以上.低压低温环境下,火焰锋面位置不断向喷嘴收缩,燃烧释放热区域缩小到燃油喷嘴头部附近,CH*发光强度不断衰减.在模拟高度4 km时,火焰开始转为淡蓝色,10 km时燃烧室内为淡蓝色火焰,燃烧趋于不稳定.

     

  • 图  1  模拟高空实验设备

    Figure  1.  Simulated altitude test facility

    图  2  模拟高空实验设备原理图

    Figure  2.  Schematic diagram of the TSATF

    图  3  模拟高空实验设备进气组件

    Figure  3.  Inlet assemblies of the TSATF

    图  4  模拟高空实验设备排气组件

    Figure  4.  Outlet assemblies of the TSATF

    图  5  模拟高空实验设备测控系统模块图

    Figure  5.  Module diagram of measurement and control system for TSATF

    图  6  不同流量条件下的气流温度

    Figure  6.  Temperatures of the airflow at different air flow ratios

    图  7  不同流量条件下的气流压力

    Figure  7.  Pressures of the airflow at different air flow ratios

    图  8  不同高度模拟条件下熄火边界

    Figure  8.  Extinction limit FAR at different simulated altitudes

    图  9  地面起动条件下CH*发光特性随当量比变化

    Figure  9.  CH* chemiluminescence images with different FAR at ground level

    图  10  不同高度模拟条件下CH*发光特性对比(mf=2.5 g/s)

    Figure  10.  CH* chemiluminescence images at different simulated altitudes(mf=2.5 g/s)

    图  11  不同高度模拟条件下燃烧室火焰状态(mf=2.5 g/s)

    Figure  11.  Digital images of flame at different simulated altitudes(mf=2.5 g/s)

    表  1  高空条件下进口参数

    Table  1.   Inlet parameters at high altitude

    altitude/km P/kPa T/K w/(g/s)
    ground 100 300 100
    2 79.5 275.15 83.01
    4 61.66 262.15 65.96
    6 47.2 249.15 51.79
    8 35.6 236.15 40.12
    10 26.4 223.15 30.61
    下载: 导出CSV

    表  2  实验台模拟进口参数

    Table  2.   Simulation parameters at high altitude

    altitude/km P/kPa T/K w/(g/s)
    ground 100 300 99.86
    2 80.2 275.26 82.52
    4 61.68 261.79 65.18
    6 48.5 249.32 50.56
    8 37.17 236.85 39.07
    10 28.14 224.04 29.26
    下载: 导出CSV
  • [1] 林宇震, 许全宏, 刘高恩.燃气轮机燃烧室[M].北京:国防工业出版社, 2008.

    Lin Y Z, Xu Q H, Liu G E. Gas turbine combustor[M]. Beijing:National Defense Industry Press, 2008(in Chi-nese).
    [2] Ballal D R, Lefebvre A H. Ignition and flame quenching of flowing heterogeneous fuel-air mixtures[J]. Combustion and Flame, 1979, 35:155-168. doi: 10.1016/0010-2180(79)90019-1
    [3] Read R W. Experimental investigations into high-altitude relight of a gas turbine[D]. Cambridge: University of Cambridge, 2008.
    [4] Federal Aviation Adminisatration (2000). Federal Aviation Regulation, Section 25.903. Restart Capability[S]. Federal Aviation Regulation, Pt. 25, Sec. 903(3), 2009.
    [5] European Aviation Safety Agency (2003). Certification Specification CS-E 910. Relighting in Flight[S]. Certification Specifications for Engines, Sec. CS-E 910, European Aviation Safety Agency, Cologne, Germany, 2003.
    [6] Mosbach T, Sadanandan R, Meier W, et al. Experimen-tal analysis of altitude relight under realistic conditions using laser and high-speed video techniques[C]. ASME Turbo Expo, 2010: Power for Land, Sea and Air. Glasgow: ASME.
    [7] Paxton B, Tambe S B, Jeng S M. Systems design and experimental evaluation of a high-altitude relight test facility[C]. ASME Turbo Expo 2016: Turbomachinery Techni-cal Conference and Exposition. Seoul: ASME.
    [8] 杜鹤龄.航空发动机高空模拟[M].北京:国防工业出版社, 2002.

    Du H L. Aero-engine altitude simulating[M]. Beijing:National Defense Industry Press, 2002(in Chinese).
    [9] 金如山, 索建秦.先进燃气轮机燃烧室[M].北京:航空工业出版社, 2016.

    Jin R S, Suo J Q. Advanced gas turbine combustor[M]. Beijing:Aviation Industry Press, 2016(in Chinese).
    [10] 刘明春.航空发动机高空模拟试车台排气冷却系统研究[D].长沙: 湖南大学, 2011.

    Liu M C. The research of exhaust cooling system on aero-engine simulating altitude test bed[D]. Changsha: Hunan University, 2011(in Chinese).
    [11] 刘晓波, 孙宗祥, 钟萍, 等.国外航空发动机空气动力学研究概况[J].燃气涡轮试验与研究, 2013, 26(4):58-62. http://d.old.wanfangdata.com.cn/Periodical/rqwlsyyyj201304013

    Liu X B, Sun Z X, Zhong P, et al. An overview of aero-engine aerodynamics overseas research[J]. Gas Turbine Experiment and Research, 2013, 26(4):58-62(in Chi-nese). http://d.old.wanfangdata.com.cn/Periodical/rqwlsyyyj201304013
    [12] 范泽兵, 胡杨, 吴锋, 等.航空发动机高空模拟试车台架参数化设计研究[J].燃气涡轮试验与研究, 2018, 31(3):53-57. http://d.old.wanfangdata.com.cn/Periodical/rqwlsyyyj201803011

    Fan Z B, Hu Y, Wu F, et al. Parametric design of aero-engine altitude simulation test bed[J]. Gas Turbine Experiment and Research, 2018, 31(3):53-57(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rqwlsyyyj201803011
    [13] 侯敏杰, 刘冬根.航空发动机高空台的发展与展望[J].航空科学技术, 2012(3):1-4. http://d.old.wanfangdata.com.cn/Periodical/hkkxjs201203001

    Hou M J, Liu D G. Development and prospect of the aero-engine altitude test facility[J]. Aeronautical Science and Technology, 2012(3):1-4(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkkxjs201203001
    [14] 刘建.小流量试车台空气降温系统方案设计[D].成都: 电子科技大学, 2007.

    Liu J. The design of air-cooling system of the altitude simulated test facility[D]. Chengdu: University of Electronic Science and Technology of China, 2007(in Chinese).
    [15] 马前容, 苏金友, 侯鑫正.大涵道比涡扇发动机高空台试验技术研究需求分析[J].燃气涡轮试验与研究, 2015(1):39-44. http://d.old.wanfangdata.com.cn/Periodical/rqwlsyyyj201501009

    Ma Q R, Su J Y, Hou X Z. Technical research require-ments for high bypass-ratio turbofan engine test at the simulated altitude test facility[J]. Gas Turbine Experi-ment and Research, 2015(1):39-44(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rqwlsyyyj201501009
    [16] Gleason C C, Oller T L, Shayeson M W, et al. Evaluation of fuel character effects on J79 engine combustion system[R]. General Electric Co Cincinnati Oh Aircraft Engine Business Group, R79AEG321, 1979.
    [17] Gleason O C, Oller T L, Shayeson M W, et al. Evaluation of fuel character effects on the F101 engine combustion system[R]. General Electric Co Cincinnati Oh Aircraft Engine Business Group, R79AEG405, 1979.
    [18] Vogel R E, Troth D L, Verdouw A J. Fuel character effects on current, high pressure ratio, can-type turbine combustion systems[R]. General Motors Corp Indiana-polis In Allison Gas Turbine Div, DDA-EDR-9762, 1980.
    [19] Gleason C C, Oller T L, Shayeson M W, et al. Evaluation of fuel character effects on J79 smokeless combustor[R]. General Electric Co Cincinnati Oh Aircraft Engine Business Group, R80AEG618, 1980.
    [20] Oiler T L, Gleason C C, Kenworthy M J, et al. Fuel mainburner/turbine effects[R]. Final Technical Report AFWAL-TR-81-2100, 1982.
    [21] Russel P L. Fuel mainburner/turbine effects[R]. AFWAL-TR-81-2081, 1982.
    [22] Lefebvre A H. Fuel effects on gas turbine combustion-ignition, stability, and combustion efficiency[J]. Journal of Engineering for Gas Turbines and Power, 1985, 107(1):24-37. doi: 10.1115/1.3239693
    [23] Micka D J, Driscoll J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2):2397-2404. doi: 10.1016/j.proci.2008.06.192
    [24] Ballal D R, Lefebvre A H. Weak extinction limits of turbulent flowing mixtures[J]. Journal of Engineering for Power, 1979, 101(3):343-348. doi: 10.1115/1.3446582
    [25] Ballal D R, Lefebvre A H. Some fundamental aspects of flame stabilization[C]. International Symposium on Air Breathing Engines, 5th, Bangalore, 1981.
    [26] Shanbhogue S J, Husain S, Lieuwen T. Lean blowoff of bluff body stabilized flames:Scaling and dynamics[J]. Progress in Energy and Combustion Science, 2009, 35(1):98-120. doi: 10.1016/j.pecs.2008.07.003
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  19
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-17
  • 修回日期:  2019-07-17
  • 发布日期:  2019-09-20
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回