主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高焓横向射流尾迹区掺混燃烧的数值特性

马光伟 孙明波 李光欣 闫巍

马光伟, 孙明波, 李光欣, 闫巍. 高焓横向射流尾迹区掺混燃烧的数值特性[J]. 气体物理, 2019, 4(5): 1-12. doi: 10.19527/j.cnki.2096-1642.0762
引用本文: 马光伟, 孙明波, 李光欣, 闫巍. 高焓横向射流尾迹区掺混燃烧的数值特性[J]. 气体物理, 2019, 4(5): 1-12. doi: 10.19527/j.cnki.2096-1642.0762
MA Guang-wei, SUN Ming-bo, LI Guang-xin, YAN Wei. Numerical Investigation on Mixing and Combustion of Transverse Jet in a High-Enthalpy Crossflow[J]. PHYSICS OF GASES, 2019, 4(5): 1-12. doi: 10.19527/j.cnki.2096-1642.0762
Citation: MA Guang-wei, SUN Ming-bo, LI Guang-xin, YAN Wei. Numerical Investigation on Mixing and Combustion of Transverse Jet in a High-Enthalpy Crossflow[J]. PHYSICS OF GASES, 2019, 4(5): 1-12. doi: 10.19527/j.cnki.2096-1642.0762

高焓横向射流尾迹区掺混燃烧的数值特性

doi: 10.19527/j.cnki.2096-1642.0762
详细信息
    作者简介:

    马光伟(1997-)男, 本科, 主要研究方向为高超声速推进技术.E-mail:MGW123321MGW@163.com

    通讯作者:

    孙明波(1980-)男, 博士, 教授, 主要研究方向为高超声速推进技术.E-mail:sunmingbo@nudt.edu.cn

  • 中图分类号: V211.3;V231.2+6

Numerical Investigation on Mixing and Combustion of Transverse Jet in a High-Enthalpy Crossflow

  • 摘要: 尾迹区作为横向射流流场的重要结构受到广泛关注,其掺混和燃烧特性对近壁面区域的流场特性有重要影响.文章在对仿真充分验证的基础上,采用Reynolds平均模拟方法对Ma=8飞行条件下高焓横向射流尾迹区中的掺混和燃烧特性进行了数值研究.探究了冷热流场尾迹区中的氢气掺混特性,冷态流场尾迹区中的激波结构对氢气分布产生一定影响,热态流场尾迹区中存在多种氢气掺混路径.V形回流区中的高浓度氢气对燃烧产生了一定的阻碍作用.定量测量了尾迹区中的火焰结构,尾迹区火焰的顶点位置随高度增加向下游线性移动,受射流主流影响,尾迹区火焰的展向宽度在距离壁面一定高度后开始增大.对冷热流场中的主要参数进行了对比,燃烧消耗了氢气使温度升高,但是尾迹区中的流动速度没有明显增加,燃烧放出的热量没有完全转化为流体的动能.

     

  • 图  1  反应机理验证指标对比

    Figure  1.  Comparisons of verification indicators of reaction mechanism

    图  2  计算域网格示意图

    Figure  2.  Sketch of the computational domain and grid

    图  3  对称面内x=6d直线上的流场参数分布

    Figure  3.  Distributions of flow field parameters along the line x=6d on symmetric plane

    图  4  实验纹影图像[11]和仿真密度梯度云图的对比

    Figure  4.  Comparisons between experiment [11] and simulation

    图  5  实验[11]和仿真对称面火焰分布

    Figure  5.  Experiment[11] and simulation of flame distributions on symmetrical plane

    图  6  叠加有速度等值线的壁面氢气分布云图

    Figure  6.  Image of H2 mass fraction overlapped with velocity contours on the wall

    图  7  横向射流激波结构示意图[16]

    Figure  7.  Sketch of shock structure of jet in crossflow[16]

    图  8  x=10d处展向截面密度梯度云图

    Figure  8.  Density gradient contour on the span-wise plane of x=10d

    图  9  多截面氢气分布云图

    Figure  9.  Image of H2 mass fraction on the wall and span-wise planes

    图  10  叠加流线的氢气分布云图

    Figure  10.  Images of H2 mass fraction overlapped with streamline

    图  11  氢气主要掺混路径示意图

    Figure  11.  Schematic diagram of main mixing path of hydrogen

    图  12  流经V形回流区的不同流线形态

    Figure  12.  Different streamlines flowing through the V-shaped recirculation region

    图  13  流经V形回流区的不同形态的流线放大图

    Figure  13.  Magnified images of different streamlines flowing through the V-shaped recirculation region

    图  14  多截面OH分布云图

    Figure  14.  Image of OH mass fraction on normal and spanwise planes

    图  15  火焰结构参数示意图

    Figure  15.  Images of flame structure parameters

    图  16  3个火焰结构参数随高度变化

    Figure  16.  Variations of three flame structural parameters with height

    图  17  对称面氢气分布云图

    Figure  17.  Images of H2 mass fraction on symmetrical plane

    图  18  对称面温度分布云图

    Figure  18.  Images of temperature on symmetrical plane

    图  19  对称面内y=0.3d直线上流场参数变化

    Figure  19.  Flow field parameters along the line of y=0.3d on symmetrical plane

    图  20  对称面内x=10d直线上流场参数变化

    Figure  20.  Flow field parameters along the line of x=10d on symmetrical plane

    图  21  y=0.3d截面内x=5dx=10d直线上流场参数变化

    Figure  21.  Flow field parameters along the line of x=5d and x=10d on cross-span plane of y=0.3d

    表  1  来流和射流参数表

    Table  1.   Parameters of crossflow and jet

    (a) Supersonic crossflow
    Ma 2.4
    T / K 1 400
    p/Pa 4×104
    δ/mm 1
    L/mm 22
    Re 7.5×104
    (b) Sonic jet
    Maj 1
    Tj/K 248
    pj/Pa 1.07×106
    D/mm 2
    J 5.03
    Red 6.8×103
    下载: 导出CSV
  • [1] 王振国.超声速气流中的火焰稳定与传播[M].北京: 科学出版社, 2015.

    Wang Z G. Flame stabilization and propagation in supersonic flow[M]. Science Press, 2015(in Chinese).
    [2] Cai Z, Liu X, Gong C, et al. Large eddy simulation of the fuel transport and mixing process in a scramjet combustor with rearwall-expansion cavity[J]. Acta Astronautica, 2016, 126:375-381. doi: 10.1016/j.actaastro.2016.05.010
    [3] Curran E T. Scramjet engines:the first forty years[J]. Journal of Propulsion and Power, 2001, 17(6):1138-1148. doi: 10.2514/2.5875
    [4] 刘桐林.美国超-X计划与X-43试飞器[J].飞航导弹, 2002(5):8-14. http://d.old.wanfangdata.com.cn/Periodical/fhdd200205002

    Liu T L. American hyper-X plan and X-43 vehicle[J]. Aerodynamic Missile Journal, 2002(5):8-14(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fhdd200205002
    [5] Ben-Yakar A. Experimental investigation of mixing and ignition of transverse jets in supersonic crossflows[D]. Palo Alto: Stanford University, 2000.
    [6] Sun M B, Geng H, Liang J H, et al. Mixing characteristics in a supersonic combustor with gaseous fuel injection upstream of a cavity flameholder[J]. Flow, Turbulence and Combustion, 2009, 82(2):271-286. doi: 10.1007/s10494-008-9178-7
    [7] Mahesh K. The interaction of jets with crossflow[J]. Annual Review of Fluid Mechanics, 2013, 45:379-407. doi: 10.1146/annurev-fluid-120710-101115
    [8] Pratte B D, Baines W D. Profiles of the round turbulent jet in a cross flow[J]. Journal of the Hydraulics Division, 1967, 93(6):53-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f3c89c35299015db26c67a5cd80d109
    [9] Gruber M R, Nejad A S, Chen T H, et al. Compressibility effects in supersonic transverse injection flowfields[J]. Physics of Fluids, 1997, 9(5):1448-1461. doi: 10.1063/1.869257
    [10] Sun M B, Zhang S P, Zhao Y H, et al. Experimental investigation on transverse jet penetration into a supersonic turbulent crossflow[J]. Science China Technological Sciences, 2013, 56(8):1989-1998. doi: 10.1007/s11431-013-5265-7
    [11] Gamba M, Mungal M G. Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow[J]. Journal of Fluid Mechanics, 2015, 780:226-273. doi: 10.1017/jfm.2015.454
    [12] Won S H, Jeung I S, Choi J Y. DES investigation of the ignition of hydrogen transverse jet into high enthalpy supersonic crossflow[R]. AIAA 2009-1557, 2009.
    [13] Won S H, Jeung I S, Parent B, et al. Numerical investigation of transverse hydrogen jet into supersonic crossflow using detached-eddy simulation[J]. AIAA Journal, 2010, 48(6):1047-1058. doi: 10.2514/1.41165
    [14] Liu C Y, Wang Z G, Wang H B, et al. Numerical investigation on mixing and combustion of transverse hydrogen jet in a high-enthalpy supersonic crossflow[J]. Acta Astronautica, 2015, 116:93-105. doi: 10.1016/j.actaastro.2015.06.023
    [15] Sun M B, Hu Z W. Formation of surface trailing counter-rotating vortex pairs downstream of a sonic jet in a supersonic cross-flow[J]. Journal of Fluid Mechanics, 2018, 850:551-583. doi: 10.1017/jfm.2018.455
    [16] Liang C H, Sun M B, Liu Y, et al. Shock wave structures in the wake of sonic transverse jet into a supersonic crossflow[J]. Acta Astronautica, 2018, 148:12-21. doi: 10.1016/j.actaastro.2018.04.009
    [17] Jachimowski C J. An analysis of combustion studies in shock expansion tunnels and reflected shock tunnels[R]. NASA-TP-3224, 1992.
    [18] Kéromnès A, Metcalfe W K, Heufer K A, et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J]. Combustion and Flame, 2013, 160(6):995-1011. doi: 10.1016/j.combustflame.2013.01.001
    [19] Li J, Zhao Z W, Kazakov A, et al. An updated comprehensive kinetic model of hydrogen combustion[J]. International Journal of Chemical Kinetics, 2004, 36(10):566-575. doi: 10.1002/kin.20026
    [20] Dowdy D R, Smith D B, Taylor S C, et al. The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures[J]. Symposium (International) on Combustion, 1991, 23(1):325-332. doi: 10.1016/S0082-0784(06)80275-4
    [21] Aung K T, Hassan M I, Faeth G M. Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure[J]. Combustion and Flame, 1997, 109(1/2):1-24. http://cn.bing.com/academic/profile?id=24b5a82e0a7b3bd0eb9fc5afe593ff60&encoded=0&v=paper_preview&mkt=zh-cn
    [22] Tse S D, Zhu D L, Law C K. Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres[J]. Proceedings of the Combustion Institute, 2000, 28(2):1793-1800. doi: 10.1016/S0082-0784(00)80581-0
    [23] Kwon O C, Faeth G M. Flame/stretch interactions of premixed hydrogen-fueled flames:measurements and predic-tions[J]. Combustion and Flame, 2001, 124(4):590-610. doi: 10.1016/S0010-2180(00)00229-7
    [24] Funk J A, Orth R C. An experimental and comparative study of jet penetration in supersonic flow[J]. Journal of Spacecraft and Rockets, 1967, 4(9):1236-1242. doi: 10.2514/3.29058
    [25] Liou M S, Steffen C J. A new flux splitting scheme[M]. San Diego:Academic Press Professional, Inc., 1993.
    [26] Liu Y, Sun M B, Liang C H, et al. Structures of near-wall wakes subjected to a sonic jet in a supersonic cross-flow[J]. Acta Astronautica, 2018, 151:886-892. doi: 10.1016/j.actaastro.2018.07.048
    [27] Donbar J M, Driscoll J F, Carter C D. Reaction zone structure in turbulent nonpremixed jet flames-from CH-OH PLIF images[J]. Combustion and Flame, 2000, 122(1/2):1-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=09d0395c47b4f9a60b6d07e767e67042
    [28] Candler G V, Cymbalist N, Dimotakis P E. Wall-modeled large-eddy simulation of autoignition-dominated supersonic combustion[J]. AIAA Journal, 2017, 55(7):2410-2423. doi: 10.2514/1.J055550
    [29] Kim S, Donde P, Raman V, et al. Large eddy simulation based studies of reacting and non-reacting transverse jets in supersonic crossflow[R]. AIAA 2012-0482, 2012.
    [30] Micka D J, Driscoll J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2):2397-2404. doi: 10.1016/j.proci.2008.06.192
    [31] 孙得川, 胡春波, 蔡体敏.带有横向射流的三维超声速湍流流场分析[J].应用数学和力学, 2002, 23(1):99-105. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx200201014

    Sun D C, Hu C P, Cai T M. Computation of supersonic turbulent flowfield with transverse injection[J]. Applied Mathematics and Mechanics, 2002, 23(1):99-105(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yysxhlx200201014
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  19
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-17
  • 修回日期:  2019-07-15
  • 发布日期:  2019-09-20
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回