主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

转捩与湍流对激波边界层干扰及底部流动结构的影响

Effect of Transition Flow and Turbulent Flow on Shock Wave Boundary Layer Interactions and Base Flow Structure

  • 摘要: 为研究转捩与湍流对激波边界层干扰及底部流动结构的影响,文章选取了二维与三维高超声速双斜面进气道模型与大钝头着陆器模型,并使用γ-Reθ转捩模型开展数值模拟研究.研究表明,对于二维进气道模型,随着前缘钝度的增加,激波边界层干扰位置前移,分离区变大,与层流流动情况相比,有转捩流动发生时,激波边界层干扰位置后移,同时分离流动强度变弱,分离区缩小;对于三维进气道模型,其拐角附近的分离流动呈现明显的三维特征,转捩流动也存在三维流动结构,与静风洞状态相比,噪音风洞状态下,有转捩流动发生,对壁面热流影响较大,对激波系影响很小.对于着陆器模型,底部流动发生转捩,使得底部流动由不稳定非定常的流动结构变为稳定定常的流动结构,这有益于姿态控制设计.

     

    Abstract: To study the effect of transition flow and turbulent flow on the shock wave boundary layer interactions and base flow structure, the models of 2 dimensional and 3 dimensional double ramp inlets and one big blunt lander model were chosen. The γ-Reθ correlation-based intermittency model was used in the study. Research results show that, for a 2 dimensional inlet model, with the leading edge bluntness increasing the position of shock wave boundary layer interactions moves upstream and the separation flow region changes larger. Comparing the status of laminar flow the position of shock wave boundary layer interactions moves downstream and the intensity of the separation flow is weakened under the transition flow condition. For the 3 dimensional inlet model, near the corner the separation flow presents the characteristic of 3 dimensional flow structure and the 3 dimensional transition flow structure also occurs. Comparing the results under the quiet and the noisy tunnel status the transition flow occurs in the latter, and makes the strong effect on the wall heat flux but no effect on the shock wave system. For the blunt lander model the calculation results show that the transition flow occurs in the base flow region. It causes the base flow changes from the laminar unstable nonstationary flow to the turbulent stable stationary flow. This is beneficial to the design of attitude control.

     

/

返回文章
返回