主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种宽速域乘波体的设计及气动特性研究

宋赋强 阎超 马宝峰

宋赋强, 阎超, 马宝峰. 一种宽速域乘波体的设计及气动特性研究[J]. 气体物理, 2017, 2(5): 25-36. doi: 10.19527/j.cnki.2096-1642.2017.05.004
引用本文: 宋赋强, 阎超, 马宝峰. 一种宽速域乘波体的设计及气动特性研究[J]. 气体物理, 2017, 2(5): 25-36. doi: 10.19527/j.cnki.2096-1642.2017.05.004
SONG Fu-qiang, YAN Chao, MA Bao-feng. Design and Aerodynamic Analysis of a Wide Speed Waverider[J]. PHYSICS OF GASES, 2017, 2(5): 25-36. doi: 10.19527/j.cnki.2096-1642.2017.05.004
Citation: SONG Fu-qiang, YAN Chao, MA Bao-feng. Design and Aerodynamic Analysis of a Wide Speed Waverider[J]. PHYSICS OF GASES, 2017, 2(5): 25-36. doi: 10.19527/j.cnki.2096-1642.2017.05.004

一种宽速域乘波体的设计及气动特性研究

doi: 10.19527/j.cnki.2096-1642.2017.05.004
详细信息
    作者简介:

    宋赋强(1991-)男, 广西玉林, 硕士研究生, 主要研究方向为计算流体力学及飞行器设计.通信地址:北京市海淀区学院路37号国家计算流体力学实验室(100191).E-mail:songfuqiang@buaa.edu.cn

    阎超(1962-)男, 江苏徐州, 教授, 主要研究方向为计算流体力学.通信地址:北京市海淀区学院路37号国家计算流体力学实验室(100191).E-mail:yanchao@buaa.edu.cn

  • 中图分类号: V211.3

Design and Aerodynamic Analysis of a Wide Speed Waverider

  • 摘要: 为了解决乘波体偏离设计条件下气动特性会恶化,特别在低速时,升力严重不足这个问题,提出了通过增大后掠角生成前缘涡,增加背风面的升力,以改善乘波体低速气动性能.首先使用Visual Basic编程语言,并通过CATIA软件二次开发技术,实现了锥导乘波体的参数化设计和自动生成.再通过控制圆锥角和流场长度这两个设计参数,获得了大后掠乘波体构型.最后,运用剪切应力输运(shear-stress-transport,SST)模型,计算了所得乘波体的气动特性,并分析了流场变化,发现乘波体在设计状态下激波能很好附着在前缘上,在小的正攻角下,乘波体可获得比设计状态更高的升阻比,满足巡航要求.运用k-ω模型计算了乘波体的低速气动特性,得到了不同攻角下升力、阻力和升阻比的变化规律.研究结果发现,乘波体在低速下产生了明显的涡结构,在合适攻角下,能产生数量可观的附加升力,提高了乘波体的水平起降性能.

     

  • 图  1  锥导乘波体示意图

    Figure  1.  Diagram of cone-derived waverider

    图  2  锥导乘波体参数化示意图

    Figure  2.  Diagram of cone-derived waverider parameterization

    图  3  不同参数下的乘波体平面图

    Figure  3.  Waverider plane under different parameters

    图  4  宽速域乘波体外形示意图

    Figure  4.  Diagram of wide speed waverider configuration

    图  5  高速计算网格

    Figure  5.  High speed calculation grids

    图  6  M=6时升力系数曲线

    Figure  6.  Lift coefficient curve when M=6

    图  7  M=6时阻力系数曲线

    Figure  7.  Drag coefficient curve when M=6

    图  8  M=6时升阻比曲线

    Figure  8.  Lift-drag ratio curve when M=6

    图  9  设计状态时Mach数等值线图

    Figure  9.  Mach number contour diagram in design state

    图  10  设计状态时压力等值线图

    Figure  10.  Pressure contour diagram in design state

    图  11  设计状态时中截面压力分布

    Figure  11.  Pressure distributions of middle section in design state

    图  12  负攻角(α=-2°)时Mach数等值线图

    Figure  12.  Mach number contour diagram when α=-2°

    图  13  负攻角状态(α=-2°)时压力等值线图

    Figure  13.  Pressure contour diagram when α=-2°

    图  14  负攻角状态(α=-2°)时中截面压力分布

    Figure  14.  Pressure distributions of middle section when α=-2°

    图  15  攻角α=10°时Mach数等值线图

    Figure  15.  Mach number contour diagram when α=10°

    图  16  攻角α=10°时压力等值线图

    Figure  16.  Pressure contour diagram when α=10°

    图  17  攻角α=10°时中截面压力分布

    Figure  17.  Pressure distributions of middle section when α=10°

    图  18  低速计算网格

    Figure  18.  Low velocity calculation grids

    图  19  低速时升力系数曲线

    Figure  19.  Lift coefficient curve at low velocity

    图  20  低速时阻力系数曲线

    Figure  20.  Drag coefficient curve at low velocity

    图  21  低速时升阻比曲线

    Figure  21.  Lift-drag ratio curve at low velocity

    图  22  攻角α=0°时流线图

    Figure  22.  Vortex and streamline diagram when α=0°

    图  23  攻角α=0°时涡量等值面图

    Figure  23.  Section diagram of vorticity when α=0°

    图  24  攻角α=0°时截面x=9 m压力云图

    Figure  24.  Pressure cloud diagram at x=9 m when α=0°

    图  25  攻角α=0°时截面x=9 m压力分布

    Figure  25.  Pressure distributions diagram at x=9 m when α=0°

    图  26  攻角α=10°时涡核及流线图

    Figure  26.  Vortex and streamline diagram when α=10°

    图  27  攻角α=10°时涡量等值面图

    Figure  27.  Section diagram of vorticity when α=10°

    图  28  攻角α=10°时截面x=9 m压力云图

    Figure  28.  Pressure cloud diagram at x=9 m when α=10°

    图  29  攻角α=10°时截面x=9 m压力分布

    Figure  29.  Pressure distributions diagram at x=9 m when α=10°

    图  30  攻角α=25°时涡量图

    Figure  30.  Vorticity diagram when α=25°

    图  31  攻角α=25°时涡量等值面图

    Figure  31.  Section diagram of vorticity when α=25°

    图  32  攻角α=25°时截面x=9 m压力云图

    Figure  32.  Pressure cloud diagram at x=9 m when α=25°

    图  33  攻角α=25°时截面x=9 m压力分布

    Figure  33.  Pressure distribution diagram at x=9 m when α=25°

    表  1  宽速域乘波体设计参数

    Table  1.   Design parameters of wide speed waverider

    M Ls/m δ/(°) Ψ/(°) θ/(°) k
    6 10.5 2.2 55 1.5 0.6
    下载: 导出CSV

    表  2  高速计算条件

    Table  2.   Parameters of high speed calculation conditions

    M height/km governing equation resolving model
    6 26 k-ω SST coupling
    下载: 导出CSV

    表  3  低速计算条件参数

    Table  3.   Parameters of low velocity calculation conditions

    M height/m governing equation resolving model
    0.3 1 000 k-ω coupling
    下载: 导出CSV
  • [1] 黄志澄, 仇强华, 袁生学.高超声速飞行展望[J].流体力学实验与测量, 1997, 11(1):6-11. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ltlc199701001&dbname=CJFD&dbcode=CJFQ

    Huang Z C, Qiu Q H, Yuan S X. Prospect of hypersonic flight[J]. Experiments and Measurements in Fluid Mechanics, 1997, 11(1):6-11(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ltlc199701001&dbname=CJFD&dbcode=CJFQ
    [2] Starkey R P, Lewis M J. Analytical off-design lift-to-drag-ratio analysis for hypersonic waveriders[J]. Journal of Spacecraft and Rockets, 2000, 37(5):684-691. doi: 10.2514/2.3618
    [3] Wang Y, Zhang D, Deng X. Design of waverider configuration with high lift-drag ratio[J]. Journal of Aircraft, 2007, 44(1):144-148. doi: 10.2514/1.22669
    [4] Starkey R P, Lewis M J. Simple analytical model forparametric studies of hypersonic waveriders[J]. Journal of Spacecraft and Rockets, 1999, 36(4):516-523. doi: 10.2514/3.27194
    [5] Lin S C, Luo Y S. Optimization of waverider generated from conical flow with combined transverse and longitudinal curvature[C]. 13th Applied Aerodynamics Conference, San Diego, 1995:1849.
    [6] Zhang J, Wang F M. Hypersonic waveriders aerodynamic performance studies[J]. Journal of Astronautics, 2007, 28(1):203-208. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YHXB200701037.htm
    [7] Sobieczky H, Dougherty F C, Jones K. Hypersonic waverider design from given shock waves[C]. Proceedings of the First International Hypersonic Waverider Symposium, Maryland, 1990:17-19.
    [8] Takashima N, Lewis M. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration[R]. AIAA 1994-0380, 1994.
    [9] Rasmussen M L, Clement L W. Cone-derived waveriders with longitudinal curvature[J]. Journal of Spacecraft and Rockets, 1986, 23(5):461-469. doi: 10.2514/3.25830
    [10] Huang W, Ma L, Wang Z G, et al. A parametric study on the aerodynamic characteristics of a hypersonic waverider vehicle[J]. Acta Astronautica, 2011, 69(3/4):135-140. http://www.sciencedirect.com/science/article/pii/S0094576511000555
    [11] He X, Rasmussen M L. Computational analysis of off-design waveriders[J]. Journal of Aircraft, 1994, 31(2):345-353. doi: 10.2514/3.46493
    [12] Mazhul I I, Rakhimov R D. Hypersonic power-law shaped waveriders in off-design regimes[J]. Journal of Aircraft, 2004, 41(4):839-845. doi: 10.2514/1.386
    [13] Takashima N, Lewis M J. Optmization of waverider-based hypersonic cruise vehicles with off-design considerations[J]. Journal of Aircraft, 2015, 36(1):235-245. http://d.wanfangdata.com.cn/Periodical_NSTL_QKJJ024793644.aspx
    [14] Rodi P E. Vortex lift waverider configurations[R]. AIAA 2012-1238, 2012.
    [15] Rodi P E. Geometrical relationships for osculating cones and osculating flowfield waveriders[R]. AIAA 2011-1188, 2011.
    [16] 王发民, 丁海河, 雷麦芳.乘波布局飞行器宽速域气动特性与研究[J].中国科学E辑:技术科学, 2009, 39(11):1828-1835. http://www.cqvip.com/QK/98492X/200911/32147910.html

    Wang F M, Ding H H, Lei M F. Aerodynamic characteristics research on wide, speed range waverider configura-tion. Science in China Series E:Technological Sciences, 2009, 39(11):1828-1835(in Chinese). http://www.cqvip.com/QK/98492X/200911/32147910.html
    [17] 李世斌, 罗世彬, 黄伟, 等.新型宽速域高超声速飞行器气动特性研究[J].固体火箭技术, 2012, 35(5):588-592. http://www.cqvip.com/QK/96831X/201205/43971262.html

    Li S B, Luo S B, Huang W, et al. Investigation on aerodynamic performance for a novel wide-ranged hypersonic vehicle[J]. Journal of Solid Rocket Technology, 2012, 35(5):588-592(in Chinese). http://www.cqvip.com/QK/96831X/201205/43971262.html
    [18] 段焰辉, 范召林, 吴文华.定后掠角密切锥乘波体的生成和设计方法[J].航空学报, 2016, 37(10):3023-3034. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201610013&dbname=CJFD&dbcode=CJFQ

    Duan Y H, Fan Z L, Wu W H. Generation and design methods of osculating cone waverider with constant angle of sweepback[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3023-3034(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201610013&dbname=CJFD&dbcode=CJFQ
    [19] 甘文彪, 阎超, 耿云飞, 等.乘波飞行器一体化构型设计[J].空气动力学学报, 2012, 30(1):68-73. http://d.wanfangdata.com.cn/Periodical/kqdlxxb201201012

    Gan W B, Yan C, Geng Y F, et al. Waverider design of integrated configuration[J]. Acta Aerodynamica Sinica, 2012, 30(1):68-73(in Chinese). http://d.wanfangdata.com.cn/Periodical/kqdlxxb201201012
    [20] Liao J R, Isaac K M, Miles J B, et al. Navier-Stokes simulation for cone-derived waverider[J]. AIAA Journal, 1992, 30(6):1521-1528. doi: 10.2514/3.11096
    [21] Lin S C, Rasmussen M L. Cone-derived waverider with combined transverse and longitudinal curvature[R]. AIAA 1988-371, 1988.
    [22] 张东俊, 王延奎, 邓学蓥.高升阻比乘波体外形设计及气动特性计算研究[J].北京航空航天大学学报, 2004, 30(5):429-433. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjhk200405007&dbname=CJFD&dbcode=CJFQ

    Zhang D J, Wang Y K, Deng X Y. Design and computational study of waverider configuration with high performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(5):429-433(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjhk200405007&dbname=CJFD&dbcode=CJFQ
    [23] Wang Z J, Luo D H, Ena C. Optimization of polysaccharides extraction from Gynostemma pentaphyllum Makino using uniform design[J]. Carbohydrate Polymers, 2007, 69(2):311-317. doi: 10.1016/j.carbpol.2006.10.013
    [24] 李响, 李为吉, 彭程远.基于均匀实验设计的响应面方法及其在无人机一体化设计中的应用[J].机械科学与技术, 2005, 24(5):575-577. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxkx200505020&dbname=CJFD&dbcode=CJFQ

    Li X, LI W J, Peng C Y. Response surface methodology based on uniform design and its application to complex engineering system optimization[J]. Mechanical Science and Technology, 2005, 24(5):575-577(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxkx200505020&dbname=CJFD&dbcode=CJFQ
    [25] Wilcox D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11):1299-1310. doi: 10.2514/3.10041
    [26] Wilcox D C. Formulation of the k-ω turbulence model revisited[J]. AIAA Journal, 2008, 46(11):2823-2838. doi: 10.2514/1.36541
    [27] Menter F R. Zonal two equation k-ω turbulence models for aerodynamic flows[R]. AIAA 1993-2906, 1993.
    [28] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605. doi: 10.2514/3.12149
  • 加载中
图(33) / 表(3)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  151
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-14
  • 修回日期:  2017-06-20
  • 发布日期:  2017-09-20
  • 刊出日期:  2017-09-01

目录

    /

    返回文章
    返回