主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

壁温对HyTRV流向涡失稳特性的影响

Influence of Wall Temperature on Instability of Streamwise Vortices on HyTRV Model

  • 摘要: 为了揭示壁温比对高速流向涡失稳机制的影响,采用全局稳定性分析方法(BiGlobal)对不同壁温下高速转捩研究飞行器(HyTRV)的流向涡失稳特征进行了研究。稳定性分析基于层流基本流,由高精度程序直接求解N-S方程获得。来流Mach数为6,单位Reynolds数为1.0×107/m,静温为79 K,攻角0°。设置3个壁温工况Tw= 150,300,450 K,壁温比范围在0.25~0.76。计算结果表明,壁温升高使得HyTRV流向涡的卷曲程度增强,流向涡的厚度增大。壁温未改变流向涡区域的不稳定模态种类,但影响主要不稳定模态的增长率和主导模态类型。随着壁温升高,不稳定模态增长率增大。壁温Tw= 300~450 K时,主导模态是形函数位于流向涡肩部的不稳定模态O3。壁温Tw= 150 K时,修正的Mack模态在上游增长率较大,在下游可以转化到剪切不稳定模态上,可能触发流向涡转捩。基于全局稳定性的eN方法计算结果表明,壁温升高使得流向涡转捩提前,从Tw= 150 K升高至Tw= 300 K时,转捩提前127 mm;从Tw= 300 K升高至Tw= 450 K时,转捩进一步提前110 mm。

     

    Abstract: In order to reveal the effect of wall temperature on the instability mechanism of high-speed streamwise vortices, the global stability analysis method (BiGlobal) was used to study the streamwise vortex instability characteristics of high-speed transition research vehicle (HyTRV) at different wall temperatures. The laminar basic flow was obtained through direct numerical simulation. The Mach number of incoming flow was 6, the unit Reynolds number was 1.0 × 107/m, the static temperature was 79 K and the angle of attack was 0°. Three wall temperature conditions were set, Tw=150, 300, 450 K, and the ratio of wall temperature to recovery temperature ranged from 0.25 to 0.76. The results show that the curling degree and the thickness of the streamwise vortices increase with the increase of wall temperature. Wall temperature does not change the types of unstable modes in the streamwise vortex region, but affects the growth rate of main unstable modes and the types of dominant modes. With the increase of wall temperature, the growth rate of unstable modes increases. When the wall temperature is in the range of Tw=300~450 K, the dominant mode is the unstable mode O3, whose shape function mainly lies at the shoulder of the streamwise vortices. When the wall temperature is Tw=150 K, the modified Mack mode increases greatly upstream, and can be transformed into shear layer instability mode downstream, which may trigger the streamwise vortex transition. The results of eN method based on global stability analysis show that the streamwise vortex transition is advanced by 127 mm when the wall temperature rises from 150 to 300 K. When the temperature rises from 300 to 450 K, the transition is further advanced by 110 mm.

     

/

返回文章
返回