主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司
窦怡彬, 陈俊铭, 石枭, 等. 平板/空气舵舵轴防热环流动及气动加热环境数值模拟[J]. 气体物理. DOI: 10.19527/j.cnki.2096-1642.1109
引用本文: 窦怡彬, 陈俊铭, 石枭, 等. 平板/空气舵舵轴防热环流动及气动加热环境数值模拟[J]. 气体物理. DOI: 10.19527/j.cnki.2096-1642.1109
DOU Yibin, CHEN Junming, SHI Xiao, et al. Numerical Simulation of Flow and Aerodynamic Heating of a Thermal-Protection Ring of Plate/Rudder Shaft[J]. PHYSICS OF GASES. DOI: 10.19527/j.cnki.2096-1642.1109
Citation: DOU Yibin, CHEN Junming, SHI Xiao, et al. Numerical Simulation of Flow and Aerodynamic Heating of a Thermal-Protection Ring of Plate/Rudder Shaft[J]. PHYSICS OF GASES. DOI: 10.19527/j.cnki.2096-1642.1109

平板/空气舵舵轴防热环流动及气动加热环境数值模拟

Numerical Simulation of Flow and Aerodynamic Heating of a Thermal-Protection Ring of Plate/Rudder Shaft

  • 摘要: 受空气舵当地攻角影响,在高超声速飞行过程中全动空气舵舵轴防热环位置会形成复杂的分离和再附流动,并伴随有严酷的气动加热载荷,是空气舵热防护设计的薄弱环节。以平板/空气舵舵轴防热环为研究对象,采用数值计算方法研究不同舵偏角、防热环环形缝隙几何参数对气动加热环境及流动的影响规律。数值计算基于非结构混合网格有限体积方法。计算结果及分析表明,舵偏角对防热环热流分布影响最大。有舵偏角的情况下防热环斜边倒角处会产生一道再附气流并形成高热流区,高热流区面积和热流峰值与舵偏角成正比。当舵偏角等于0°时,环形缝隙Z=0 mm剖面处气流从环形缝隙底部向上流入舵面底部缝隙;当舵偏角大于0°时,舵面底部缝隙内的来流会在防热环斜边倒角前方形成旋涡,同时平板表面的气流向下进入环形缝隙并在缝隙深度方向形成旋涡。固定舵偏角和环形缝隙宽度,改变缝隙深度主要对斜边倒角和环形缝隙迎风面热流分布有影响。随着缝隙深度的增加,环形缝隙Z=0 mm剖面处的流动结构从2个旋涡发展为3个旋涡。固定舵偏角和环形缝隙深度,改变缝隙宽度主要对环形缝隙迎风面热流分布有影响。随着缝隙宽度的增加,环形缝隙Z=0 mm剖面处的旋涡流动发展得更加充分,深度方向流动结构由3个旋涡发展成2个主旋涡和底部2个小旋涡结构。

     

    Abstract: Influenced by the local angle of attack of the air rudder, a complex separation and reattachment flow will form at the position of the full-motion rudder shaft thermal-protection ring during a hypersonic flight, accompanied by severe aerodynamic heating loads, which is the weak link in the thermal protection design of the air rudder. Taking the flat plate/air rudder shaft thermal-protection ring as the research object, the numerical calculation method was used to study the influence rule of different rudder deflection angles and geometric parameters of the thermal-protection ring's annular gap on the flow and aerodynamic heating. The numerical calculation was based on the unstructured hybird gird finite volume method. The calculation results and analysis show that the rudder deflection has the greatest effect on the heat flux distribution in the thermal-protection ring. Under the condition of rudder deflection, a reattached flow and high flux region will form at the chamfer of the thermal-protection ring. The area of the high flux region and the flux peak are proportional to the rudder deflection angle. When the rudder deflection angle equals 0°, the airflow at the Z=0 mm cross-section of the annular gap will flow upward into the gap at the bottom of the rudder surface. When the rudder deflection angle is greater than 0°, the incoming flow in the gap at the bottom of the rudder surface will form a vortex in front of the chamfer of the thermal-protection ring, and at the same time the airflow on the flat plate enters the annular gap downward and forms a vortex in the direction of the gap depth. When the rudder deflection angle and the gap width are fixed, the gap depth mainly affects the heat flux at the chamfer of the thermal-protection ring and the annular gap windward side. As the gap depth increases, the flow structure at the Z=0 mm cross-section of the annular gap develps from 2 vortices to 3 vortices. When the rudder deflection angle and the gap depth are fixed, the gap width mainly affects the heat flux at the annular gap windward side. As the gap width increases, the vortex at the Z=0 mm cross-section of the annular gap develops more fully, and the flow structure in the depth direction develops from 3 vortices to 2 main vortices and 2 small vortices at the bottom of the annual gap.

     

/

返回文章
返回