主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

深空再入飞行器烧蚀粗糙表面高超声速转捩预测

Prediction of Hypersonic Boundary Layer Transition on Ablative Rough Surfaces of Deep Space Reentry Capsules

  • 摘要: 深空再入飞行器为提高气动减速效率, 一般采用大钝度迎风外形以及烧蚀降热型防热结构。而扁平的前体外形与气动加热烧蚀导致表面粗糙度急剧增加等因素, 极易造成飞行器迎风面流动失稳, 流动出现转捩甚至演化为湍流, 使表面热流分布发生巨大变化, 给飞行器安全带来极大挑战。国内以往对大钝头再入器微观形貌变化下高超声速边界层失稳机制和转捩模拟的研究开展很少。以大钝头防热罩与沙粒式分布粗糙元为研究对象, 分别利用基于高超声速与粗糙元修正的γ-Reθ转捩模式和k-ω-γ转捩模式, 分析了高超声速来流条件下分布粗糙元等效粗糙高度、来流Reynolds数、攻角以及化学非平衡基本流对大钝头迎风表面的间歇因子分布和边界层转捩位置以及热流分布的影响, 研究了深空再入飞行器烧蚀粗糙表面的高超声速边界层转捩发展规律与气动热影响规律。

     

    Abstract: In order to improve aerodynamic deceleration efficiency, deep space reentry capsules generally adopt large blunt windward shape and ablative heat protection system. However, factors such as the flat forebody shape and the sharp increase in surface roughness caused by aerothermodynamic heating and ablation easily lead to the instability of the windward flowfield of the capsule, resulting in the transition or even evolution into turbulence, which greatly changes the distribution of the surface heat flux and brings great challenges to the safety of the capsule. Formerly the studies on the instability mechanism and simulation for the transition of hypersonic boundary layer under the change of microscopic morphology of large blunt heat shield are relatively unexplored. Using the γ-Reθ transition model and k-ω-γtransition model based on hypersonic and rough element correction, the intermittent factors of rough element equivalent roughness height, incoming Reynolds number, angle of attack and chemical non-equilibrium basic flow on the windward surface of the large blunt heat shield were analyzed. The development law of hypersonic boundary layer transition and aerothermodynamic effect on ablative rough surfaces of deep space reentry capsules were studied.

     

/

返回文章
返回