主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司
张禹瑶, 何创新, 刘应征. 翼型流动分离的EnKF非稳态数据同化[J]. 气体物理, 2024, 9(3): 35-45. DOI: 10.19527/j.cnki.2096-1642.1046
引用本文: 张禹瑶, 何创新, 刘应征. 翼型流动分离的EnKF非稳态数据同化[J]. 气体物理, 2024, 9(3): 35-45. DOI: 10.19527/j.cnki.2096-1642.1046
ZHANG Yuyao, HE Chuangxin, LIU Yingzheng. EnKF Unsteady Data Assimilation of the Flow Separation Around an Aerofoil[J]. PHYSICS OF GASES, 2024, 9(3): 35-45. DOI: 10.19527/j.cnki.2096-1642.1046
Citation: ZHANG Yuyao, HE Chuangxin, LIU Yingzheng. EnKF Unsteady Data Assimilation of the Flow Separation Around an Aerofoil[J]. PHYSICS OF GASES, 2024, 9(3): 35-45. DOI: 10.19527/j.cnki.2096-1642.1046

翼型流动分离的EnKF非稳态数据同化

EnKF Unsteady Data Assimilation of the Flow Separation Around an Aerofoil

  • 摘要: 为了改善RANS模型对流动分离现象的预测性能,针对NACA0012翼型绕流,采用基于非稳态计算的集合Kalman滤波(ensemble Kalman filter, EnKF)数据同化方法,结合粒子图像测速(particle image velocimetry, PIV)数据对SST湍流模型的模型常数进行了修正,对比分析了不同模型常数扰动幅度、不同集合样本数目下稳态数据同化和非稳态数据同化的预测结果差异。研究结果表明,相对于稳态计算,非稳态计算能够增强数值模拟的稳健性,从而可以在较大的扰动幅度下,改善RANS模型的初始预测分布。稳态数据同化在模型常数扰动幅度较大或者样本数目较少时存在明显缺陷,非稳态的数据同化具有更好的鲁棒性,能够在更大扰动幅度和更少样本数下得到最优的湍流模型常数,对流场的预测更加准确。

     

    Abstract: To improve the prediction performance of the RANS model for flow separation, the model constants of the SST turbulence model were recalibrated using the unsteady ensemble Kalman filter (EnKF) data assimilation (DA) combined with the particle image velocimetry (PIV) data of the flow around a NACA0012 aerofoil. The differences in prediction between steady DA and unsteady DA with different model constant perturbations and ensemble sizes were compared and analyzed. The results show that the unsteady simulation can enhance the robustness of the numerical simulation and improve the initial prediction distribution of the RANS model compared to the steady simulation. The steady DA has obvious defects for large model constant perturbation or small ensemble size. The unsteady DA is more robust and can obtain the optimal turbulence model constants with larger perturbation and smaller ensemble size, resulting in more accurate prediction of the flow fields.

     

/

返回文章
返回