主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于高超声速飞行器新热障的认知与探讨

艾邦成 陈思员 陈智 苗文博 罗晓光 邓代英 韩海涛 俞继军

艾邦成, 陈思员, 陈智, 苗文博, 罗晓光, 邓代英, 韩海涛, 俞继军. 关于高超声速飞行器新热障的认知与探讨[J]. 气体物理, 2023, 8(4): 1-17. doi: 10.19527/j.cnki.2096-1642.1034
引用本文: 艾邦成, 陈思员, 陈智, 苗文博, 罗晓光, 邓代英, 韩海涛, 俞继军. 关于高超声速飞行器新热障的认知与探讨[J]. 气体物理, 2023, 8(4): 1-17. doi: 10.19527/j.cnki.2096-1642.1034
AI Bang-cheng, CHEN Si-yuan, CHEN Zhi, MIAO Wen-bo, LUO Xiao-guang, DENG Dai-ying, HAN Hai-tao, YU Ji-jun. Cognition and Discussion on New Thermal Barrier of Hypersonic Vehicles[J]. PHYSICS OF GASES, 2023, 8(4): 1-17. doi: 10.19527/j.cnki.2096-1642.1034
Citation: AI Bang-cheng, CHEN Si-yuan, CHEN Zhi, MIAO Wen-bo, LUO Xiao-guang, DENG Dai-ying, HAN Hai-tao, YU Ji-jun. Cognition and Discussion on New Thermal Barrier of Hypersonic Vehicles[J]. PHYSICS OF GASES, 2023, 8(4): 1-17. doi: 10.19527/j.cnki.2096-1642.1034

关于高超声速飞行器新热障的认知与探讨

doi: 10.19527/j.cnki.2096-1642.1034
基金项目: 

国家自然科学基金-联合基金重点支持项目 U20B2017

国家自然科学基金-联合基金重点支持项目 U21B2051

国家自然科学基金-联合基金重点支持项目 U22B20135

详细信息
    作者简介:

    艾邦成(1974-)男, 博士, 研究员, 主要研究高温气体动力学与飞行器热防护。E-mail: stara@sohu.com

    通讯作者:

    陈思员(1984-)男, 博士, 研究员, 主要研究飞行器气动热与热防护。E-mail: siyuanbuaa@163.com

  • 中图分类号: V414.9

Cognition and Discussion on New Thermal Barrier of Hypersonic Vehicles

  • 摘要: 未来高超声速飞行器向更远的航程、更快的速度等航空航天技术融合的方向发展,不断突破飞行速度边界、巡弋空间边界。飞行速度不断提高,热载荷越来越严酷,同时防热结构多功能一体化设计的需求以及结构质量强约束等新的特点对热防护提出了全新的要求和挑战。针对这些全新的挑战,热防护呈现出新的特点和需求,防热需求发生重大变化,已有技术和现有设计手段存在明显不足,对相关科学问题的认知存在明显缺失,亟待探索新的技术途径。基于此,提出新热障的概念,分析了长时间加热、非烧蚀热防护、精细化热环境分析等方面的研究现状,指出了新热障问题的具体内涵和重要发展方向,回顾了热防护技术正在探索的新方向和新方法,包括低烧蚀/非烧蚀技术、系统基因组材料设计方法、疏导式创新热防护技术等,认为解决新热障是一个突破现有热防护技术极限的科学技术问题,需要通过多途径联合、多方法综合、多学科交叉突破这一高超声速飞行器热防护瓶颈问题,从精细化热环境预示与热环境控制、多尺度热防护材料性能预示、全新的防隔热材料设计途径、创新的热结构等方面入手,探索飞行器新热障问题的创新解决方案,并对相关技术研究进展进行了总结。

     

  • 图  1  未来典型高超声速飞行器新的速域和空域

    Figure  1.  New velocity and airspace of furture vehicles

    图  2  新热障问题主要研究思路

    Figure  2.  Main solutions of new thermal barrier problerms

    图  3  猎鹰9数值模拟典型网格[1]

    Figure  3.  Typical grids in numerical simulation for Falcon-9[1]

    图  4  HIFiRE-5飞行器风洞实验转捩热流分布[13]

    Figure  4.  Wind tunnel heat flux result of HIFiRE-5[13]

    图  5  飞行器复杂物理效应示意图[28]

    Figure  5.  Schematic diagram of complex physical effects of vehicles[28]

    图  6  Knudsen层典型速度及温度分布

    Figure  6.  Typical velocity and temperature distribution of Knudsen layer

    图  7  热环境主动控制概念示意图

    Figure  7.  Schematic diagram of aeroheating environment active control

    图  8  不同引射量表面热流分布对比

    Figure  8.  Heat flux distribution of different injection gas mass flow rates

    图  9  氮化硅材料表面复杂氧化机制示意图[58]

    Figure  9.  Schematic diagram of surficial oxidation mechanism of silicon nitride[58]

    图  10  同样加热状态下“被动氧化”向“主动氧化”转变典型温度变化[63]

    Figure  10.  A typical passive-to-active transition under the same plasma generator condition[63]

    图  11  不同方法测得的典型高温材料催化系数

    Figure  11.  Catalytic coefficients of different test methods for typical materials

    图  12  非烧蚀表层材料样品

    Figure  12.  Surface layer sample of typical non-ablation material

    图  13  梯度非烧蚀防热材料典型应用

    Figure  13.  Typical application of graded non-ablation material

    图  14  疏导式热防护原理

    Figure  14.  Illumination of thermal conduction and consummation

    图  15  地面考核实验

    Figure  15.  Wind tunnel tests

    图  16  复杂结构成型及超材料强化研究

    Figure  16.  Complex structure and its enhancement

    图  17  工程化应用研究

    Figure  17.  Engineering investigation

    图  18  强热量耗散主动冷却热防护

    Figure  18.  Illumination of thermal control by phase transition

    图  19  强热量耗散主动冷却效果

    Figure  19.  Results of thermal control by phase transition

    图  20  疏导-燃油复合防热方案

    Figure  20.  Mechanism of multiple thermal protection

    图  21  疏导-燃油复合防热效果

    Figure  21.  Results of multiple thermal protection

    图  22  疏导-燃油复合防热应用研究

    Figure  22.  Engineering investigation of multiple thermal protection

    图  23  气膜孔隙的优化设计

    Figure  23.  Optimized design of film hole

    图  24  端头模型的电弧风洞红外热图

    Figure  24.  Temperature field of head model in arc jet tests

    图  25  平板模型的电弧风洞红外热图

    Figure  25.  Temperature field of flat model in arc jet tests

    表  1  平板表面摩擦阻力受适应系数影响

    Table  1.   Influence of the accommodation coefficient on skin friction of the plate

    H/km no slip σv=1.0 σv=0.5 reduction rate of friction
    30 2.26×10-3 2.25×10-3 2.23×10-3 0.62%
    60 1.97×10-2 1.94×10-2 1.83×10-2 5.50%
    90 3.79×10-2 2.67×10-1 1.08×10-1 59.47%
    下载: 导出CSV
  • [1] Edquist K T, Korzun A M, Bibb K L, et al. Comparison of Navier-Stokes flow solvers to Falcon 9 supersonic retropropulsion flight data[R]. AIAA 2017-5296, 2017.
    [2] Chen Z, Zhang L, Li P F. Detached eddy simulation on hypersonic base flow structure of Reentry-F vehicle[J]. Procedia Engineering, 2015, 99: 452-457. doi: 10.1016/j.proeng.2014.12.559
    [3] 邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(11): 3515-3521. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201511002.htm

    Qiu B, Zhang H Y, Guo Y J, et al. Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3515-3521(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201511002.htm
    [4] Gnoffo P A, White J A. Computational aerothermodynamic simulation issues on unstructured grids[R]. AIAA 2004-2371, 2004.
    [5] Gnoffo P A. Multi-dimensional inviscid flux reconstruction for simulation of hypersonic heating on tetrahedral grids[R]. AIAA 2009-599, 2009.
    [6] Gnoffo P A. Updates to multi-dimensional flux reconstruction for hypersonic simulations on tetrahedral grids[R]. AIAA 2010-1271, 2010.
    [7] Nompelis I, Drayna T, Candler G V. Development of a hybrid unstructured implicit solver for the simulation of reacting flows over complex geometries[R]. AIAA 2004-2227, 2004.
    [8] Candler G, Barnhardt M, Drayna T, et al. Unstructured grid approaches for accurate aeroheating simulations[R]. AIAA 2007-3959, 2007.
    [9] 艾邦成, 张亮, 陈智. 低耗散非结构网格多维限制器[J]. 计算物理, 2018, 35(5): 545-553. doi: 10.19596/j.cnki.1001-246x.7734

    Ai B C, Zhang L, Chen Z. Low dissipation multidimensional limiter for unstructured mesh[J]. Chinese Journal of Computational Physics, 2018, 35(5): 545-553(in Chinese). doi: 10.19596/j.cnki.1001-246x.7734
    [10] 张亮, 艾邦成, 陈智. 非结构有限体积耗散格式精度分析[J]. 兵器装备工程学报, 2018, 39(11): 184-193. doi: 10.11809/bqzbgcxb2018.11.040

    Zhang L, Ai B C, Chen Z. Accuracy analysis of unstructured finite volume discretization scheme for diffusive flux[J]. Journal of Ordnance Equipment Engineering, 2018, 39(11): 184-193(in Chinese). doi: 10.11809/bqzbgcxb2018.11.040
    [11] 原志超. 高超声速气动热数值模拟研究[D]. 大连: 大连理工大学, 2017.

    Yuan Z C. Numerical simulation research on hypersonic aero-heating[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
    [12] 杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报, 2018, 36(2): 180-195. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802004.htm

    Yang W B, Shen Q, Zhu D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2): 180-195(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802004.htm
    [13] Juliano T J, Schneider S P. Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel[R]. AIAA 2010-5004, 2010.
    [14] Zhang L, Ai B C, Chen Z. New multi-dimensional limiter for finite volume discretizations on unstructured meshes[C]. Asia-Pacific International Symposium on Aerospace Technology. Singapore: Springer, 2018.
    [15] Cebeci T, Stewartson K. On stability and transition in three-dimensional flows[J]. AIAA Journal, 1980, 18(4): 398-405. doi: 10.2514/3.50772
    [16] Malik M R. Prediction and control of transition in supersonic and hypersonic boundary layers[J]. AIAA Journal, 1989, 27(11): 1487-1493. doi: 10.2514/3.10292
    [17] Johnson H B, Candler G V. Analysis of laminar-turbulent transition in hypersonic flight using PSE-Chem[R]. AIAA 2006-3057, 2006.
    [18] 苏彩虹. 高超声速边界层转捩预测中的关键科学问题——感受性、扰动演化及转捩判据研究进展[J]. 空气动力学学报, 2020, 38(2): 355-367. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002019.htm

    Su C H. Progress in key scientific problems of hypersonic boundary-layer transition prediction: receptivity, evolution of disturbances and transition criterion[J]. Acta Aerodynamica Sinica, 2020, 38(2): 355-367(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002019.htm
    [19] 傅德薰, 马延文, 李新亮, 等. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010.

    Fu D X, Ma Y W. Li X L, et al. Direct numerical simulation of compressible turbulence[M]. Beijing: Science Press, 2010(in Chinese).
    [20] 赵晓慧, 邓小兵, 毛枚良, 等. 高超声速进气道强制转捩流动的大涡模拟[J]. 航空学报, 2016, 37(8): 2445-2453. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608010.htm

    Zhao X H, Deng X B, Mao M L, et al. Large eddy simulation for forced transition flow at hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2445-2453(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608010.htm
    [21] 董明. 高超声速边界层中由粗糙元引起强制转捩的机理[J]. 气体物理, 2016, 1(5): 25-38. doi: 10.19527/j.cnki.2096-1642.2016.05.003

    Dong M. Mechanism of roughness-induced transition in hypersonic boundary layers[J]. Physics of Gases, 2016, 1(5): 25-38(in Chinese). doi: 10.19527/j.cnki.2096-1642.2016.05.003
    [22] Cho J R, Chung M K. A k-ε-γ equation turbulence model[J]. Journal of Fluid Mechanics, 1992, 237: 301-322. doi: 10.1017/S0022112092003422
    [23] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. doi: 10.2514/1.42362
    [24] Wang L, Fu S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1): 165-187. doi: 10.1007/s10494-011-9336-1
    [25] Krause M, Behr M, Ballmann J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model[R]. AIAA 2008-2598, 2008.
    [26] 孔维萱, 闫超, 赵瑞. γ-Reθ模式应用于高速边界层转捩的研究[J]. 空气动力学学报, 2012, 31(1): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301022.htm

    Kong W X, Yan C, Zhao R. γ-Reθ model research for high-speed boundary layer transition[J]. Actra Aerodynamica Sinica, 2012, 31(1): 121-126(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301022.htm
    [27] 郑赟, 李虹杨, 刘大响. γ-Reθ转捩模型在高超声速下的应用及分析[J]. 推进技术, 2014, 35(3): 296-304. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201403003.htm

    Zheng Y, Li H Y, Liu D X. Application and analysis of γ-Reθ transition model in hypersonic flow[J]. Journal of Propulsion Technology, 2014, 35(3): 296-304(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201403003.htm
    [28] Sala M D. A review of hypersonics aerodynamics, aerothermodynamics and plasmadynamics activities within NASA's fundamental aeronautics program[R]. AIAA 2007-4264, 2007.
    [29] Hains F D, Keyes J W. Shock interference bell aerospace, heating in hypersonic flows[J]. AIAA Journal, 1972, 10(11): 1441-1447 doi: 10.2514/3.50388
    [30] Gnoffo P A, Gupta R N, Shinn J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[R]. NASA TP-2867, 1989.
    [31] Kurotaki T, Ito T, Matsuzaki T, et al. CFD evaluation of catalytic model on SiO2-based TPS in arc-heated wind tunnel[R]. AIAA 2003-155, 2003.
    [32] Nasuti F, Barbato M, Bruno C. Material-dependent catalytic recombination modeling for hypersonic flows[J]. Journal of Thermo-Physics and Heat Transfer, 1996, 10(1): 131-136. doi: 10.2514/3.763
    [33] Inger G R, Elder J. Recombination-dominated nonequilibrium heat transfer to arbitrarily catalytic hypersonic vehicles[J]. Journal of Thermophysics, 1991, 5(4): 449-454. doi: 10.2514/3.286
    [34] Clark R K, Cunnington G R Jr, Wiedemann K E. Determination of the recombination efficiency of thermal control coatings for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1995, 32(1): 89-96. doi: 10.2514/3.26579
    [35] Osawa H, Suzuki T, Mizuno M, et al. Study of nitrogen recombination coefficient for SiC material surfaces[R]. AIAA 2008-1248, 2008.
    [36] Afonina N E, Gromov V G, Kovalev V L. Catalysis mo-deling for thermal protection systems of vehicles entering into martian atmosphere[R]. AIAA 2001-2832, 2001.
    [37] 聂春生, 李宇, 黄建栋, 等. 高超声速非平衡气动加热试验及数值分析研究[J]. 中国科学: 技术科学, 2018, 48(8): 845-852. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201808004.htm

    Nie C S, Li Y, Huang J D, et al. Test of aero-heating in hypersonic non-equilibrium flow and numerical simulation study[J]. Scientia Sinica Technologica, 2018, 48(8): 845-852(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201808004.htm
    [38] Schlichting H, Gersten K. Boundary-layer theory[M]. 9th ed. Berlin: Springer, 2017.
    [39] Kays W M, Crawford M E. Convective heat and mass transfer[M]. 3rd ed. New York: McGraw-Hill, 1993.
    [40] Jiang P X, Liao Z Y, Huang Z, et al. Influence of shock waves on supersonic transpiration cooling[J]. International Journal of Heat and Mass Transfer, 2019, 129: 965-974. doi: 10.1016/j.ijheatmasstransfer.2018.10.043
    [41] 张红军, 康宏琳. 激波干扰对发汗冷却影响的数值模拟研究[J]. 宇航学报, 2021, 42(3): 324-332. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202103008.htm

    Zhang H J, Kang H L. Numerical simulation study on the effects of shock wave interference on transpiration cooling[J]. Journal of Astronautics, 2021, 42(3): 324-332(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202103008.htm
    [42] Scott C D. Wall boundary equations with slip and catalysis for multicomponent, nonequilibrium gas flows[R]. NASA TM X-58111, 1973.
    [43] Gupta R N, Scott C D, Moss J N. Slip-boundary equations for multicomponent nonequilibrium airflow[R]. NASA TP-1985-2452, 1985.
    [44] Candler G V, Nompelis I, Druguet M C, et al. CFD Vali-dation for hypersonic flight-hypersonic double-cone flow simulations[J]. AIAA 2002-0581, 2002.
    [45] Laguarta F, Lupon N, Armengol J. Optical glass polishing by controlled laser surface-heat treatment[R]. Applied Optics, 1994, 33(27): 6508-6513.
    [46] Ma C P, Guan Y C, Zhou W. Laser polishing of additive manufactured Ti alloys[J]. Optics and Lasers in Engineering, 2017, 93: 171-177.
    [47] McConarty W A, Anthony F M. Design and evaluation of active cooling systems for Mach 6 cruise vehicle wings[R]. NASA CR-1916, 1971.
    [48] Rocher M, McGilvray M, Hermann T, et al. Testing a transpiration cooled Zirconium-Di-Boride sample in the plasma tunnel at IRS[R]. AIAA 2019-1552, 2019.
    [49] Wu Y D, Zhu G S, Gao B, et al. Phase-changed transpiration cooling: material selection, permeability analysis, and experimental tests in high heat flux[R]. AIAA 2017-2265, 2017.
    [50] Huang G, Zhu Y H, Liao Z Y, et al. Biomimetic self-pumping transpiration cooling for additive manufactured porous module with tree-like micro-channel[J]. International Journal of Heat and Mass Transfer, 2019, 131: 403-410. doi: 10.1016/j.ijheatmasstransfer.2018.07.143
    [51] Balat M J. Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air[J]. Journal of the European Ceramic Society, 1996, 16(1): 55-62.
    [52] Deng D Y, Luo X G, Chen S Y, et al. The active-to-passive oxidation transition mechanism and engineering prediction method of C/SiC composites[J]. Science China Technological Sciences, 2013, 56(6): 1403-1408.
    [53] Jacobson N S, Roth D J, Rauser R W, et al. Oxidation of carbon/carbon through coating cracks[R]. E-16840, 2008.
    [54] 罗晓光, 俞继军, 邓代英. 高辐射弱催化协同表层材料及其与非平衡热环境耦合作用[R]. 国家重点基础研究发展计划(973计划)总结报告. 2015CB655201, 中国航天空气动力技术研究院, 2019.

    Luo X G, Yu J J, Deng D Y. Surficial non-ablative materials with collaborative high emissivity and low catalysis properties and their coupled effects with non-equilibrium gas flow[R]. Report of the National Basic Research Program of China(973 Program, No. 2015CB655201). China Academy of Aerospace Aerodynamics, 2019(in Chinese).
    [55] Yu J J, Luo X G, Deng D Y, et al. Modeling the heat transfer and mass loss of Si3N4/SiO2 composite under arc-jet tunnel environments[R]. AIAA 2017-2361, 2017.
    [56] 张立嵩, 俞继军. 高超声速飞行器热防护技术[M]. 北京: 科学出版社, 2021.

    Zhang L S, Yu J J. Thermal protection technology for hypersonic vehicles[M]. Beijing: Science Press, 2021(in Chinese).
    [57] Parthasarathy T A, Rapp R A, Opek M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2[J]. Acta Materialia, 2007, 55(17): 5999-6010.
    [58] 俞继军, 邓代英, 罗晓光, 等. 材料防热的多尺度现象与防热建模[J]. 气体物理, 2021, 6(4): 1-18. doi: 10.19527/j.cnki.2096-1642.0928

    Yu J J, Deng D Y, Luo X G, et al. Multi-scale phenome-na in thermal protection materials experienced aero-heat-ing and thermo-ablative modeling forward quantitative analysis[J]. Physics of Gases, 2021, 6(4): 1-18(in Chinese). doi: 10.19527/j.cnki.2096-1642.0928
    [59] Hu P, Gui K X, Hong W H, et al. High-performance ZrB2-SiC-Cf composite prepared by low-temperature hot pressing using nanosized ZrB2 powder[J]. Journal of the European Ceramic Society, 2017, 37(6): 2317-2324.
    [60] Gild J, Zhang Y Y, Harrington T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports, 2016, 6: 37946.
    [61] Yoshinaka T, Kubota Y, Hatta H. Evaluation of passive and active oxidation transition of CVD-SiC by numerical calculation[R]. AIAA 2012-3007, 2012.
    [62] 汪雷, 潘勇, 邓代英, 等. C/SiC材料氧化烧蚀行为的理论模型与计算方法[J]. 导弹与航天运载技术, 2022(4): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202204019.htm

    Wang L, Pan Y, Deng D Y, et al. Theoretical model and calculation method of oxidation ablation behavior of C/SiC materials[J]. Missiles and Space Vehicles, 2022(4): 92-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202204019.htm
    [63] Herdrich G, Auweter-Kurtz M, Löhle S, et al. Oxidation behavior of SiC-based thermal protection system materials using newly developed probe techniques[R]. AIAA 2004-2173, 2004.
    [64] 宋永忠, 樊桢, 李兴超, 等. 碳/碳复合材料SiC/MoSi2/ZrO2涂层体系氧化烧蚀性能[J]. 复合材料学报, 2016, 33(10): 2290-2296.

    Song Y Z, Fan Z, Li X C, et al. Oxidation ablation pro-perty of carbon/carbon composites SiC/MoSi2/ZrO2 coating system[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2290-2296(in Chinese).
    [65] 艾邦成. 临近空间高超声速飞行器计算空气动力学[M]. 北京: 科学出版社, 2020.

    Ai B C. Computational aerodynamics for nearspace hypersonic vehicles[M]. Beijing: Science Press, 2020(in Chinese).
    [66] Lachaud J, Cozmuta I, Mansour N N. Multiscale approach to ablation modeling of phenolic impregnated carbon ablators[J]. Journal of Spacecraft and Rockets, 2010, 47(6): 910-921.
    [67] Silverstein C C. A feasibility study of heat-pipe-cooled leading edges for hypersonic cruise aircraft[R]. NASA CR-1857, 1971.
    [68] Niblock G A, Reeder J C, Huneidi F. Four space shuttle wing leading edge concepts[J]. Journal of Spacecraft and Rockets, 1974, 11(5): 314-320.
    [69] Camarda C. Aerothermal tests of a heat-pipe-cooled leading edge at Mach 7[R]. NASA TP-1320, 1978.
    [70] Boman B L, Citrin K H, Garner E C, et al. Heat pipes for wing leading edges of hypersonic vehicles[R]. NASA CR-181922, 1990.
    [71] Glass D E, Camarda C J, Merrigan M A, et al. Fabrication and testing of a leading-edge-shaped heat pipe[J]. Journal of Spacecraft Rockets, 1999, 36(6): 921-923.
    [72] 陈思员, 艾邦成, 俞继军, 等. Q/QJA 687-2018疏导式热防护疏导效率评价方法[S]. 2018.

    Chen S Y, Ai B C, Yu J J, et al. Q/QJA 687-2018 evaluation method of dredging efficiency of thermal protection structure[S]. 2018(in Chinese).
    [73] Steeves C A, He M Y, Kasen S D, et al. Feasibility of metallic structural heat pipes as sharp leading edges for hypersonic vehicles[J]. Journal of Applied Mechanics, 2009, 76(3): 031014.
    [74] Kasen S D. Thermal management at hypersonic leading edges[D]. Charlottesville: University of Virginia, 2013.
    [75] Lu Q, Han H T, Hu L F, et al. Preparation and testing of nickel-based superalloy/sodium heat pipes[J]. Heat and Mass Transfer, 2017, 53(11): 3391-3397.
    [76] Ai B C, Chen S Y, Yu J J, et al. Fabrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling[J]. Heat and Mass Transfer, 2018, 54(5): 1359-1366. doi: 10.1007/s00231-017-2236-8
    [77] 艾邦成, 陈思员, 韩海涛, 等. 复杂构型前缘疏导热防护技术[J]. 气体物理, 2019, 4(1): 1-7. doi: 10.19527/j.cnki.2096-1642.0734

    Ai B C, Chen S Y, Han H T, et al. Complex dredging thermal protection structure for leading edge[J]. Physics of Gases, 2019, 4(1): 1-7(in Chinese). doi: 10.19527/j.cnki.2096-1642.0734
    [78] Chen S Y, Han H T, Shi J T, et al. Applications of sodiu-m/GH4099 heat pipes for nose cap cooling[J]. Microgravity Science and Technology, 2019, 31(4): 417-424. doi: 10.1007/s12217-019-09714-w
    [79] Hu L F, Shi K T, Luo X G, et al. Application of additively manufactured pentamode metamaterials in Sodium/Inconel 718 heat pipes[J]. Materials, 2021, 14(11): 3016.
    [80] 李炜, 胡龙飞, 陈思员, 等. 一种在热管板材上加工不锈钢毛细芯的方法: 中国, 201510486697.2[P]. 2017-05-03.

    Li W, Hu L F, Chen S Y, et al. Method for processing stainless steel capillary cores on heat pipe sheets: China, 201510486697.2[P]. 2017-05-03(in Chinese).
    [81] 胡龙飞, 鲁芹, 韩海涛, 等. 一种温度开关及其制备方法: 中国, 201911341054.3[P]. 2020-10-01.

    Hu L F, Lu Q, Han H T, et al. A temperature switch and preparation method: China, 201911341054.3[P]. 2020-10-01(in Chinese).
    [82] 陈思员, 初敏, 胡龙飞, 等. 一种半开式高温热管结构: 中国, 201921966896.3[P]. 2020-08-14.

    Chen S Y, Chu M, Hu L F, et al. A semi-open type high temperature heat pipe structure: China, 201921966896.3[P]. 2020-08-14(in Chinese).
    [83] 韩海涛, 艾邦成, 胡龙飞, 等. 一种高超声速飞行器疏导式舵轴防热结构: 中国, 201611180135.6[P]. 2019-05-24.

    Han H T, Ai B C, Hu L F, et al. A kind of dredging structure of rudder shaft of hypersonic aircraft: China, 201611180135.6[P]. 2019-05-24(in Chinese).
    [84] 胡龙飞, 陈智, 韩海涛, 等. 模块化再生冷却装置: 中国, 201510486699.1[P]. 2017-12-22.

    Hu L F, Chen Z, Han H T, et al. Modular regenerative cooling structure: China, 201510486699.1[P]. 2017-12-22(in Chinese).
    [85] 韩海涛, 陈智, 胡龙飞, 等. 基于高温热管的超燃燃烧室热防护结构[J]. 航空动力学报, 2017, 32(5): 1043-1050. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201705005.htm

    Han H T, Chen Z, Hu L F, et al. High temperature heat pipe enhanced thermal protection structure for scramjet combustion chamber[J]. Journal of Aerospace Power, 2017, 32(5): 1043-1050(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201705005.htm
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  114
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10
  • 修回日期:  2023-02-28
  • 刊出日期:  2023-07-20

目录

    /

    返回文章
    返回