主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀来流中斜爆轰波对扰动的动态响应特性

滕宏辉 牛淑贞 杨鹏飞 周林 王宽亮

滕宏辉, 牛淑贞, 杨鹏飞, 周林, 王宽亮. 非均匀来流中斜爆轰波对扰动的动态响应特性[J]. 气体物理, 2023, 8(5): 1-9. doi: 10.19527/j.cnki.2096-1642.1033
引用本文: 滕宏辉, 牛淑贞, 杨鹏飞, 周林, 王宽亮. 非均匀来流中斜爆轰波对扰动的动态响应特性[J]. 气体物理, 2023, 8(5): 1-9. doi: 10.19527/j.cnki.2096-1642.1033
TENG Hong-hui, NIU Shu-zhen, YANG Peng-fei, ZHOU Lin, WANG Kuan-liang. Dynamic Response Characteristics of Oblique Detonation Waves in Non-Uniform Inflows[J]. PHYSICS OF GASES, 2023, 8(5): 1-9. doi: 10.19527/j.cnki.2096-1642.1033
Citation: TENG Hong-hui, NIU Shu-zhen, YANG Peng-fei, ZHOU Lin, WANG Kuan-liang. Dynamic Response Characteristics of Oblique Detonation Waves in Non-Uniform Inflows[J]. PHYSICS OF GASES, 2023, 8(5): 1-9. doi: 10.19527/j.cnki.2096-1642.1033

非均匀来流中斜爆轰波对扰动的动态响应特性

doi: 10.19527/j.cnki.2096-1642.1033
基金项目: 

国家自然科学基金 12002041

国家自然科学基金 12202014

先进航空动力创新工作站项目 HKCX2022-01-018

详细信息
    作者简介:

    滕宏辉(1981-)男, 教授, 主要研究气相爆轰物理及其应用。E-mail: hhteng@bit.edu.cn

  • 中图分类号: O354.4;V231.3

Dynamic Response Characteristics of Oblique Detonation Waves in Non-Uniform Inflows

  • 摘要: 在斜爆轰推进系统中, 经过进气道压缩的气流速度仍然很大, 导致斜爆轰波前的气流难以达到均匀预混, 进而对斜爆轰波系产生影响。以高空飞行条件下非均匀来流中的斜爆轰波系为对象, 采用Euler方程结合氢气-空气基元反应模型, 通过波角变化和波面位置偏移研究了斜爆轰的受扰动特性。采用当量比作为非均匀的表征变量, 在斜爆轰波面上游引入了一个高度可变的扰动区, 定义φA为扰动幅值, 扰动区的当量比分布通过正弦函数进行模化。研究发现, 随着φA的减小, 波角减小, 波面向下游移动; 随着φA的增大, 波角增加, 波面向上游移动。当φA为负值且足够小时, 可以观察到波角突变的新现象, 分析表明此现象源于来流当量比非均匀作用下的重新起爆。当φA为正值且足够大时, 被扰动区的波角处于非平衡状态, 较大的当量比梯度会导致其高于理论值, 而较小的当量比梯度会导致其低于理论值。对波面位置的偏移量进行了量化分析, 发现波面位移随φA的变化仅在其为正值时是非线性的, 在其为负值时是线性的, 随扰动区高度的变化也是线性的。

     

  • 图  1  计算区域示意图

    Figure  1.  Schematic diagram of the computational domain

    图  2  基础算例的斜爆轰波温度场和压力沿流线分布

    Figure  2.  Oblique detonation temperature fields and pressure profiles along streamlines of the basic case

    图  3  不同扰动幅值下的斜爆轰波温度场

    Figure  3.  Temperature fields of oblique detonations with different disturbance amplitudes

    图  4  不同扰动幅值下的斜爆轰波面角度

    Figure  4.  Wave angle evolutions of oblique detonations with different disturbance amplitudes

    图  5  扰动区高度对斜爆轰波温度场影响

    Figure  5.  Effects of disturbance height on temperature fields of oblique detonation

    图  6  扰动区高度对斜爆轰波角影响,φA=-0.5

    Figure  6.  Effects of disturbance height on wave angles of oblique detonation, φA=-0.5

    图  7  扰动区高度对斜爆轰波角影响,φA=1.5

    Figure  7.  Effects of disturbance height on wave angles of oblique detonation, φA=1.5

    图  8  波面位移绝对值随φAH的变化

    Figure  8.  Absolute displacement distance of wave front as a function of φA and H

    表  1  模拟研究采用的主要参数

    Table  1.   Key parameters employed in the simulations

    T/K p/kPa U/(m/s) θ/(°) φ φA H/cm
    814.4 196.3 2 418.9 19 0.5 2.0 2~8
    下载: 导出CSV

    表  2  波面位移的相对偏差(以H=2 cm算例为基准)

    Table  2.   Relative deviations of wave front displacement distance based on the case of H=2 cm

    φA relative deviations
    H=4 cm H=6 cm H=8 cm
    1.5 -4.85% -3.15% -4.17%
    0.5 -1.92% -1.86% -1.91%
    -0.5 -1.70% 0.75% 1.12%
    下载: 导出CSV
  • [1] Jiang Z L, Zhang Z J, Liu Y F, et al. Criteria for hypersonic airbreathing propulsion and its experimental verifi-cation[J]. Chinese Journal of Aeronautics, 2021, 34(3): 94-104. doi: 10.1016/j.cja.2020.11.001
    [2] Rosato D A, Thornton M, Sosa J, et al. Stabilized detonation for hypersonic propulsion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20): e2102244118.
    [3] 滕宏辉, 杨鹏飞, 张义宁, 等. 斜爆震发动机的流动与燃烧机理[J]. 中国科学: 物理学力学天文学, 2020, 50(9): 090008. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202009009.htm

    Teng H H, Yang P F, Zhang Y N, et al. Flow and combustion mechanism of oblique detonation engines[J]. Scien-tia Sinica-Physica, Mechanica & Astronomica, 2020, 50(9): 090008 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202009009.htm
    [4] Li C P, Kailasanath K, Oran E S. Detonation structures behind oblique shocks[J]. Physics of Fluids, 1994, 6(4): 1600-1611. doi: 10.1063/1.868273
    [5] Broda J C. An experimental study of oblique detonation waves[D]. Connecticut: University of Connecticut, 1993.
    [6] Viguier C, Guerraud C, Debordes D. H2-air and CH4-air detonations and combustions behind oblique shock waves[J]. Symposium (International) on Combustion, 1994, 25(1): 53-59. doi: 10.1016/S0082-0784(06)80627-2
    [7] Figueria da Silva L F, Deshaies B. Stabilization of an oblique detonation wave by a wedge: a parametric numerical study[J]. Combustion and Flame, 2000, 121(1/2): 152-166.
    [8] Teng H H, Jiang Z L. On the transition pattern of the oblique detonation structure[J]. Journal of Fluid Mechanics, 2012, 713: 659-669. doi: 10.1017/jfm.2012.478
    [9] Teng H H, Tian C, Zhang Y N, et al. Morphology of oblique detonation waves in a stoichiometric hydrogen-air mixture[J]. Journal of Fluid Mechanics, 2021, 913: A1. doi: 10.1017/jfm.2020.1131
    [10] Wang K L, Zhang Z J, Yang P F, et al. Numerical study on reflection of an oblique detonation wave on an outward turning wall[J]. Physics of Fluids, 2020, 32(4): 046101. doi: 10.1063/5.0001845
    [11] Wang K L, Teng H H, Yang P F, et al. Numerical investigation of flow structures resulting from the interaction between an oblique detonation wave and an upper expansion corner[J]. Journal of Fluid Mechanics, 2020, 903: A28. doi: 10.1017/jfm.2020.644
    [12] Sislian J P, Dudebout R, Schumacher J, et al. Incomplete mixing and off-design effects on shock-induced combustion ramjet performance[J]. Journal of Propulsion and Power, 2000, 16(1): 41-48. doi: 10.2514/2.5529
    [13] Alexander D C, Sislian J P. Computational study of the propulsive characteristics of a shcramjet engine[J]. Journal of Propulsion and Power, 2008, 24(1): 34-44. doi: 10.2514/1.29951
    [14] Chan J, Sislian J P, Alexander D. Numerically simulated comparative performance of a scramjet and shcramjet at Mach 11[J]. Journal of Propulsion and Power, 2010, 26(5): 1125-1134. doi: 10.2514/1.48144
    [15] Iwata K, Nakaya S, Tsue M. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2761-2769. doi: 10.1016/j.proci.2016.06.094
    [16] Iwata K, Imamura O, Akihama K, et al. Numerical study of self-sustained oblique detonation in a non-uniform mixture[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3651-3659. doi: 10.1016/j.proci.2020.07.070
    [17] Fang Y S, Hu Z M, Teng H H, et al. Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen-air mixtures[J]. Aerospace Science and Technology, 2017, 71: 256-263. doi: 10.1016/j.ast.2017.09.027
    [18] 涂胜甲. 斜爆震发动机燃料喷注掺混及"圆台型"斜爆震燃烧特性研究[D]. 北京: 中国航天科工集团第三研究院, 2022.

    Tu S J. Study on fuel injection and mixing in oblique deto-nation engine and combustion characteristics of "frustum of a cone" ODW[D]. The Third Academy of China Aerospace Science and Industry Corporation Limited, 2022 (in Chinese).
    [19] Lee J H S. Dynamic parameters of gaseous detonations[J]. Annual Review of Fluid Mechanics, 1984, 16: 311-336. doi: 10.1146/annurev.fl.16.010184.001523
    [20] Urzay J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627. doi: 10.1146/annurev-fluid-122316-045217
    [21] Mazaheri K, Mahmoudi Y, Radulescu M I. Diffusion and hydrodynamic instabilities in gaseous detonations[J]. Combustion and Flame, 2012, 159(6): 2138-2154. doi: 10.1016/j.combustflame.2012.01.024
    [22] McBride B J, Zehe M J, Gordon S. NASA Glenn coefficients for calculating thermodynamic properties of individual species[R]. NASA/TP-2002-211556, 2002.
    [23] Burke M P, Chaos M, Ju Y G, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion[J]. International Journal of Chemical Kinetics, 2012, 44(7): 444-474. doi: 10.1002/kin.20603
    [24] Jiang Z L. On dispersion-controlled principles for non-oscillatory shock-capturing schemes[J]. Acta Mechanica Sinica, 2004, 20(1): 1-15. doi: 10.1007/BF02493566
    [25] Ng H D, Lee J H S. Direct initiation of detonation with a multi-step reaction scheme[J]. Journal of Fluid Mechanics, 2003, 476: 179-211. doi: 10.1017/S0022112002002872
    [26] 滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展[J]. 力学进展, 2020, 50(1): 202002. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ202000002.htm

    Teng H H, Jiang Z L. Progress in multi-wave structure and stability of oblique detonations[J]. Advances in Mechanics, 2020, 50(1): 202002 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ202000002.htm
    [27] 杨鹏飞, 张子健, 杨瑞鑫, 等. 斜爆轰发动机的推力性能理论分析[J]. 力学学报, 2021, 53(10): 2853-2864. doi: 10.6052/0459-1879-21-206

    Yang P F, Zhang Z J, Yang R X, et al. Theorical study on propulsive performance of oblique detonation engine[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese). doi: 10.6052/0459-1879-21-206
    [28] Zhang Y N, Gong J S, Wang T. Numerical study on initia-tion of oblique detonations in hydrogen-air mixtures with various equivalence ratios[J]. Aerospace Science and Technology, 2016, 49: 130-134. doi: 10.1016/j.ast.2015.11.035
    [29] Kaneshige M, Shepherd J E. Detonation database. Technical Report FM97-8, GALCIT, 1997[EB/OL]. http://www.galcit.caltech.edu/detn_db/html/.
    [30] Teng H H, Dick N H, Jiang Z L. Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture[J]. Proceedings of the Combustion Institute, 2017, 36(12): 2735-2742.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  28
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-04
  • 修回日期:  2023-02-06

目录

    /

    返回文章
    返回