主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激波诱导双层气柱演化的偏心效应研究

冯莉莉 翟志刚 司廷 罗喜胜

冯莉莉, 翟志刚, 司廷, 罗喜胜. 激波诱导双层气柱演化的偏心效应研究[J]. 气体物理, 2022, 7(2): 13-25. doi: 10.19527/j.cnki.2096-1642.0959
引用本文: 冯莉莉, 翟志刚, 司廷, 罗喜胜. 激波诱导双层气柱演化的偏心效应研究[J]. 气体物理, 2022, 7(2): 13-25. doi: 10.19527/j.cnki.2096-1642.0959
FENG Li-li, ZHAI Zhi-gang, SI Ting, LUO Xi-sheng. Eccentric Effect on Evolution of Shock-Accelerated Double-Layer Gas Cylinder[J]. PHYSICS OF GASES, 2022, 7(2): 13-25. doi: 10.19527/j.cnki.2096-1642.0959
Citation: FENG Li-li, ZHAI Zhi-gang, SI Ting, LUO Xi-sheng. Eccentric Effect on Evolution of Shock-Accelerated Double-Layer Gas Cylinder[J]. PHYSICS OF GASES, 2022, 7(2): 13-25. doi: 10.19527/j.cnki.2096-1642.0959

激波诱导双层气柱演化的偏心效应研究

doi: 10.19527/j.cnki.2096-1642.0959
基金项目: 

国家自然科学基金 12022201

国家自然科学基金 11772329

国家自然科学基金 11625211

香港研究资助局项目 15207420

详细信息
    作者简介:

    冯莉莉(1999-)女, 硕士, 主要研究方向为实验流体力学.E-mail: lilyfeng@mail.ustc.edu.cn

  • 中图分类号: O354.5

Eccentric Effect on Evolution of Shock-Accelerated Double-Layer Gas Cylinder

  • 摘要: 实验与数值研究了平面激波诱导下双层气柱的演化规律.利用肥皂膜技术生成了3种双层气柱,通过固定内、外层气柱半径,改变内层气柱在流向方向上的位置,研究了双层气柱偏心效应对流场演化的影响.结果表明,当内层气柱向上游偏移时,外层气柱的上游界面在后期会产生朝向上游的"射流";当内层气柱向下游偏移时,下游两道界面会较早地耦合在一起.获得了内、外层气柱上游界面的线性速度,发现压力等因素对内、外层气柱上游界面分别有抑制和促进作用,且作用大小与偏心程度密切相关.稀疏波的作用会明显改变外层气柱上游界面的运动行为,使其线性运动阶段延长或缩短.外层气柱的宽度在偏心时均被促进,高度随着内层气柱靠近下游逐渐减小;内层气柱向上游偏移时,其自身的宽度被抑制,但高度没有明显变化.对双层气柱的界面面积和平均体积分数的定量分析表明内层气柱向上游偏移时会促进物质混合.获得了环量随时间的变化规律,发现在演化早期双层气柱的环量可以通过已有模型的线性叠加得到较好的预测.

     

  • 图  1  双层气柱生成装置示意图

    Figure  1.  Schematic of the device to generate interfaces and the cases in this work

    图  2  计算域示意图

    Figure  2.  Schematic of the computational domain

    图  3  不同网格尺寸下, 激波冲击气柱后146 μs时, 沿双层气柱中心线的密度分布情况

    Figure  3.  Density profiles with different mesh sizes along the center line of the double-layer gas cylinder at 146 μs after shock impact

    图  4  工况Ⅰ双层SF6气柱被平面激波冲击后实验与数值的纹影图

    Figure  4.  Experimental and numerical schlieren images of a double-layer SF6 cylinder impacted by a planar shock for case Ⅰ

    图  5  工况Ⅱ双层SF6气柱被平面激波冲击后实验与数值的纹影图

    Figure  5.  Experimental and numerical schlieren images of a double-layer SF6 cylinder impacted by a planar shock for case Ⅱ

    图  6  工况Ⅲ双层SF6气柱被平面激波冲击后实验与数值的纹影图

    Figure  6.  Experimental and numerical schlieren images of a double-layer SF6 cylinder impacted by a planar shock for case Ⅲ

    图  7  工况Ⅰ在不同时刻的波系示意图

    Figure  7.  Schematics of wave patterns at different times for case Ⅰ

    图  8  外层气柱上游极点的位移

    Figure  8.  Displacement of the upstream pole of the outer cylinder

    图  9  内层气柱上游极点的位移

    Figure  9.  Displacement of the upstream pole of the inner cylinder

    图  10  外层气柱宽度与高度的变化情况

    Figure  10.  Evolution of the width and the height of the outer cylinder

    图  11  内层气柱宽度与高度的变化情况

    Figure  11.  Evolution of the width and the height of the inner cylinder

    图  12  各工况下气柱总面积和气柱内的平均体积分数随时间的变化情况

    Figure  12.  Evolution of the total interfacial area and mean volume fraction of the shocked cylinder for three cases

    图  13  3种工况下中心线上方界面沉积的正环量、负环量和总环量随时间的变化情况

    Figure  13.  Time-variation of the positive, negative and total circulations deposited on the shocked cylinders at the upper half plane for three cases

    表  1  各组工况的物理参数

    Table  1.   Physical parameters for each case

    cases Ma d/mm VF1 VF2
    1.28 -7 0.56 0.07
    1.27 0 0.5 0.05
    1.28 +7 0.5 0.06
    下载: 导出CSV

    表  2  外层气柱上游极点的速度

    Table  2.   Velocities of the upstream poles of inner and outer cylinders for all cases

    cases Vi ΔV VRM V0
    Ⅰ-out 96.5 108.1 -35.8 24.2
    Ⅱ-out 95.0 105.3 -33.2 22.9
    Ⅲ-out 96.1 109.9 -34.3 20.5
    Ⅰ-in 133.9 129.3 21.4 -19.5
    Ⅱ-in 130.7 125.6 21.7 -16.6
    Ⅲ-in 140.5 130.4 21.2 -11.1
    下载: 导出CSV

    表  3  各组工况数值结果的环量值(Γsim)与4种组合模型的环量预测值(环量的单位为m2/s)

    Table  3.   Comparison of circulations from the numerical simulations (Γsim) and theoretical predictions by the models for each case(the unit of circulation is m2/s)

    cases Γsim ΓSZ+ΓPB relative error/(%) ΓSZ+ΓYKZ relative error/(%) ΓPB+ΓYKZ relative error/(%) ΓPB+ΓPB relative error/(%)
    -5.99 -5.95 0.67 -6.69 11.69 -6.52 8.85 -5.78 3.51
    -5.38 -5.36 0.37 -6.05 12.45 -5.70 5.95 -5.02 6.69
    -5.58 -5.56 0.36 -6.26 12.19 -5.99 7.35 -5.29 5.20
    下载: 导出CSV
  • [1] Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297-319. doi: 10.1002/cpa.3160130207
    [2] Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5): 101-104.
    [3] Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21(2): 020501. doi: 10.1063/1.4865400
    [4] Yang J, Kubota T, Zukoski E E. Applications of shock-induced mixing to supersonic combustion[J]. AIAA Journal, 1993, 31(5): 854-862. doi: 10.2514/3.11696
    [5] Shimoda J, Inoue T, Ohira Y, et al. On cosmic-ray production efficiency at supernova remnant shocks propaga-ting into realistic diffuse interstellar medium[J]. The Astrophysical Journal, 2015, 803(2): 98. doi: 10.1088/0004-637X/803/2/98
    [6] Brouillette M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34: 445-468. doi: 10.1146/annurev.fluid.34.090101.162238
    [7] Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181: 41-76. doi: 10.1017/S0022112087002003
    [8] Picone J M, Boris J P. Vorticity generation by shock propagation through bubbles in a gas[J]. Journal of Fluid Mechanics, 1988, 189: 23-51. doi: 10.1017/S0022112088000904
    [9] Jacobs J W. Shock-induced mixing of a light-gas cylinder[J]. Journal of Fluid Mechanics, 1992, 234: 629-649. doi: 10.1017/S0022112092000946
    [10] Jacobs J W. The dynamics of shock accelerated light and heavy gas cylinders[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(9): 2239-2247. doi: 10.1063/1.858562
    [11] Tomkins C, Kumar S, Orlicz G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. Journal of Fluid Mechanics, 2008, 611: 131-150. doi: 10.1017/S0022112008002723
    [12] 王兵, 卢梦. Richtmyer-Meshkov不稳定性强化混合参变机理[J]. 气体物理, 2016, 1(6): 5-21. http://qtwl.xml-journal.net/article/id/30db44a4-85b7-4c9e-bf32-c7211c1c29d3

    Wang B, Lu M. Mixing-enhancement mechanism of Richtmyer-Meshkov instability at different parameters[J]. Physics of Gases, 2016, 1(6): 5-21(in Chinese). http://qtwl.xml-journal.net/article/id/30db44a4-85b7-4c9e-bf32-c7211c1c29d3
    [13] 张赋, 翟志刚, 司廷, 等. 反射激波作用下重气柱界面演化的PIV研究[J]. 实验流体力学, 2014, 28(5): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201405003.htm

    Zhang F, Zhai Z G, Si T, et al. Experimental study on the evolution of heavy gas cylinder under reshock condition by PIV method[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5): 13-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201405003.htm
    [14] Zou L Y, Liao S F, Liu C L, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders[J]. Physics of Fluids, 2016, 28(3): 036101. doi: 10.1063/1.4943127
    [15] 黄熙龙, 廖深飞, 邹立勇, 等. 激波与椭圆形重气柱相互作用的PLIF实验[J]. 爆炸与冲击, 2017, 37(5): 829-836. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201705007.htm

    Huang X L, Liao S F, Zou L Y, et al. Experiment on interaction of shock and elliptic heavy-gas cylinder by using PLIF[J]. Explosion and Shock Waves, 2017, 37(5): 829-836(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201705007.htm
    [16] 李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究[J]. 物理学报, 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879

    Li D D, Wang G, Zhang B. Flow and mixing in shock-accelerated elliptic helium gas cylinder process[J]. Acta Physica Sinica, 2018, 67(18): 184702(in Chinese). doi: 10.7498/aps.67.20180879
    [17] Wang X S, Yang D G, Wu J Q, et al. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder[J]. Physics of Fluids, 2015, 27(6): 064104. doi: 10.1063/1.4922613
    [18] Ding J C, Liang Y, Chen M J, et al. Interaction of planar shock wave with three-dimensional heavy cylindri-cal bubble[J]. Physics of Fluids, 2018, 30(10): 106109. doi: 10.1063/1.5050091
    [19] Ding J C, Si T, Chen M J, et al. On the interaction of a planar shock with a three-dimensional light gas cylinder[J]. Journal of Fluid Mechanics, 2017, 828: 289-317. doi: 10.1017/jfm.2017.528
    [20] Ou J F, Ding J C, Luo X S, et al. Effects of Atwood number on shock focusing in shock-cylinder interaction[J]. Experiments in Fluids, 2018, 59(2): 29. doi: 10.1007/s00348-018-2492-5
    [21] Kumar S, Orlicz G, Tomkins C, et al. Stretching of material lines in shock-accelerated gaseous flows[J]. Physics of Fluids, 2005, 17(8): 082107. doi: 10.1063/1.2031347
    [22] Tomkins C, Prestridge K, Rightley P, et al. A quantitative study of the interaction of two Richtmyer-Meshkov-unstable gas cylinders[J]. Physics of Fluids, 2003, 15(4): 986-1004. doi: 10.1063/1.1555802
    [23] Tomkins C, Prestridge K, Rightley P, et al. Flow morphologies of two shock-accelerated unstable gas cylinders[J]. Journal of Visualization, 2002, 5(3): 273-283. doi: 10.1007/BF03182335
    [24] Zhai Z G, Ou J F, Ding J C. Coupling effect on shocked double-gas cylinder evolution[J]. Physics of Fluids, 2019, 31(9): 096104. doi: 10.1063/1.5119003
    [25] Zou L Y, Huang W B, Liu C L, et al. On the evolution of double shock-accelerated elliptic gas cylinders[J]. Journal of Fluids Engineering, 2014, 136(9): 091205. doi: 10.1115/1.4026439
    [26] 廖深飞, 邹立勇, 黄熙龙, 等. Richtmyer-Meshkov不稳定的双椭圆气柱相互作用的PIV研究[J]. 中国科学: 物理学力学天文学, 2016, 46(3): 034702. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201603006.htm

    Liao S F, Zou L Y, Huang X L, et al. A PIV study on the interaction of double Richtmyer-Meshkov-unstable elliptic gas cylinders[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2016, 46(3): 034702(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201603006.htm
    [27] Kumar S, Vorobieff P, Orlicz G, et al. Complex flow morphologies in shock-accelerated gaseous flows[J]. Physica D: Nonlinear Phenomena, 2007, 235(1/2): 21-28.
    [28] Mikaelian K O. Richtmyer-Meshkov instabilities in stratified fluids[J]. Physical Review A, 1985, 31(1): 410-419. doi: 10.1103/PhysRevA.31.410
    [29] Mikaelian K O. Rayleigh-Taylor and Richtmyer-Meshkov instabilities in multilayer fluids with surface tension[J]. Physical Review A, 1990, 42(12): 7211-7225. doi: 10.1103/PhysRevA.42.7211
    [30] Mikaelian K O. Rayleigh-Taylor and Richtmyer-Meshkov instabilities in finite-thickness fluid layers[J]. Physics of Fluids, 1995, 7(4): 888-890. doi: 10.1063/1.868611
    [31] Mikaelian K O. Numerical simulations of Richtmyer-Meshkov instabilities in finite-thickness fluid layers[J]. Physics of Fluids, 1996, 8(5): 1269-1292. doi: 10.1063/1.868898
    [32] Budzinski J M, Benjamin R F, Jacobs J W. Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer[J]. Physics of Fluids, 1994, 6(11): 3510-3512. doi: 10.1063/1.868447
    [33] Jacobs J W, Jenkins D G, Klein D L, et al. Nonlinear growth of the shock-accelerated instability of a thin fluid layer[J]. Journal of Fluid Mechanics, 1995, 295: 23-42. doi: 10.1017/S002211209500187X
    [34] Jacobs J W, Klein D L, Jenkins D G, et al. Instability growth patterns of a shock-accelerated thin fluid layer[J]. Physical Review Letters, 1993, 70(5): 583-586. doi: 10.1103/PhysRevLett.70.583
    [35] Balakumar B J, Orlicz G C, Tomkins C D, et al. Simultaneous particle-image velocimetry-planar laser-induced fluorescence measurements of Richtmyer-Meshkov instability growth in a gas curtain with and without reshock[J]. Physics of Fluids, 2008, 20(12): 124103. doi: 10.1063/1.3041705
    [36] Orlicz G C, Balakumar B J, Tomkins C D, et al. A Mach number study of the Richtmyer-Meshkov instability in a varicose, heavy-gas curtain[J]. Physics of Fluids, 2009, 21(6): 064102. doi: 10.1063/1.3147929
    [37] Liang Y, Liu L L, Zhai Z G, et al. Evolution of shock-accelerated heavy gas layer[J]. Journal of Fluid Mechanics, 2020, 886: A7. doi: 10.1017/jfm.2019.1052
    [38] Liang Y, Luo X S. On shock-induced heavy-fluid-layer evolution[J]. Journal of Fluid Mechanics, 2021, 920: A13. doi: 10.1017/jfm.2021.438
    [39] Ding J C, Li J M, Sun R, et al. Convergent Richtmyer-Meshkov instability of a heavy gas layer with perturbed outer interface[J]. Journal of Fluid Mechanics, 2019, 878: 277-291. doi: 10.1017/jfm.2019.661
    [40] Li J M, Ding J C, Si T, et al. Convergent Richtmyer-Meshkov instability of light gas layer with perturbed outer surface[J]. Journal of Fluid Mechanics, 2020, 884: R2. doi: 10.1017/jfm.2019.989
    [41] Sun R, Ding J C, Zhai Z G, et al. Convergent Richtmy-er-Meshkov instability of heavy gas layer with perturbed inner surface[J]. Journal of Fluid Mechanics, 2020, 902: A3. doi: 10.1017/jfm.2020.584
    [42] Wang G, Wang Y N, Li D D, et al. Numerical study on shock-accelerated gas rings[J]. Physics of Fluids, 2020, 32(2): 026102. doi: 10.1063/1.5135762
    [43] Feng L L, Xu J R, Zhai Z G, et al. Evolution of shock-accelerated double-layer gas cylinder[J]. Physics of Fluids, 2021, 33(8): 086105. doi: 10.1063/5.0062459
    [44] Liang Y, Jiang Y Z, Wen C Y, et al. Interaction of a planar shock wave and a water droplet embedded with a vapour cavity[J]. Journal of Fluid Mechanics, 2020, 885: R6. doi: 10.1017/jfm.2019.1031
    [45] Ou J F, Zhai Z G. Effects of aspect ratio on shock-cylinder interaction[J]. Acta Mechanica Sinica, 2019, 35(1): 61-69. doi: 10.1007/s10409-018-0819-3
    [46] Abd-El-Fattah A M, Henderson L F. Shock waves at a slow-fast gas interface[J]. Journal of Fluid Mechanics, 1978, 89(1): 79-95. doi: 10.1017/S0022112078002475
    [47] Rikanati A, Oron D, Sadot O, et al. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability[J]. Physical Review E, 2003, 67(2): 026307. doi: 10.1103/PhysRevE.67.026307
    [48] Yang J, Kubota T, Zukoski E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity[J]. Journal of Fluid Mechanics, 1994, 258: 217-244. doi: 10.1017/S0022112094003307
    [49] Samtaney R, Zabusky N J. Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws[J]. Journal of Fluid Mechanics, 1994, 269: 45-78. doi: 10.1017/S0022112094001485
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  451
  • HTML全文浏览量:  153
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-01
  • 修回日期:  2021-11-11
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回