主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司
邓华宇, 罗日成, 阳冠菲, 等. 直流偏置对射频容性耦合放电特性的影响[J]. 气体物理, 2022, 7(3): 87-92. DOI: 10.19527/j.cnki.2096-1642.0944
引用本文: 邓华宇, 罗日成, 阳冠菲, 等. 直流偏置对射频容性耦合放电特性的影响[J]. 气体物理, 2022, 7(3): 87-92. DOI: 10.19527/j.cnki.2096-1642.0944
DENG Hua-yu, LUO Ri-cheng, YANG Guan-fei, et al. Influence of Applied DC Bias on the Characteristics of RF Capacitive Coupling Discharge[J]. PHYSICS OF GASES, 2022, 7(3): 87-92. DOI: 10.19527/j.cnki.2096-1642.0944
Citation: DENG Hua-yu, LUO Ri-cheng, YANG Guan-fei, et al. Influence of Applied DC Bias on the Characteristics of RF Capacitive Coupling Discharge[J]. PHYSICS OF GASES, 2022, 7(3): 87-92. DOI: 10.19527/j.cnki.2096-1642.0944

直流偏置对射频容性耦合放电特性的影响

Influence of Applied DC Bias on the Characteristics of RF Capacitive Coupling Discharge

  • 摘要: 直流偏置能较好抑制射频容性耦合等离子体(radio frequency capacitively coupled plasma, RF-CCP)表面充电效应, 但仍存在其对RF-CCP放电参量影响规律不明确, 电源对参量控制复杂等问题. 构建了直流源与射频源的板-板结构RF-CCP仿真模型, 在射频源基础上施加负直流源, 研究直流偏置对RF-CCP放电特性影响, 并比较射频与直流偏置对放电参量影响差异. 结果表明, 无直流源时, 周期平均电子密度Ne, ave, 周期平均电子温度Te, ave均为对称分布, Ne, ave呈现两端小、中间大的凸函数分布, Te, ave在距极板4 mm以内鞘层区均有陡然上升, 极大值出现在距极板1 mm左右处; 直流源会使等离子体主体区Ne, ave升高并发生偏移, 直流源侧Ne, ave降低, 对侧Ne, ave增加, 且对侧增加速率较快. 直流偏置可改善单侧电子温度与电子通量, 但提高电子密度能力弱于射频源. 实际工程中, 若欲提高单侧电子温度与电子通量, 应施加直流源, 若提高整体电子密度, 应提高射频源功率.

     

    Abstract: DC Bias can better suppress the RF-CCP surface charging effect, but the influences on RF-CCP discharge parameters and complex parameter control for power supply are still unclear. A board-board structure RF-CCP simulation model for DC and RF sources was constructed. A negative DC source was applied on the basis of the RF source to study its impact on the discharge characteristics of RF-CCP. The effects of RF and DC bias on discharge parameters were compared. The results show that when no DC source is applied, the period average electron density Ne, ave and the period average electron temperature Te, ave are symmetrically distributed, and Ne, ave presents a convex shape with low ends and high middle. Te, ave has a sharp rise within 4 mm from the pole plate, and reaches a maximum value at 1 mm from the two pole plates. The DC source will increase and offset Ne, ave in the main plasma zone, decrease Ne, ave on the DC source side, increase Ne, ave at a significant speed on the bottom plate side. Applying a DC bias can improve one-side electron temperature and electron flux, but the ability to increase electron density is weaker than RF source. In order to increase the electron temperature and electron flux on one side, a DC source should be applied. If the overall electron density is increased, the power of RF source should be increased.

     

/

返回文章
返回