Exploration of Experimental Techniques on Ma=10 Scramjets in FD-21 High Enthalpy Shock Tunnel
-
摘要: 针对Mach数8以上(Ma>8)冲压发动机地面试验能力不足问题,基于FD-21高能脉冲风洞,开展了吸气式推进试验技术探索,提升了FD-21风洞的重活塞驱动能力,获得了总压18.66 MPa、总温3 950 K、Ma=9.62、静压436.6 Pa、速度3 km/s的高焓大动压模拟流场,同时发展了高时间分辨率吸收光谱测量技术和基于重模型自由飞原理的发动机推阻测量方法.在此基础上,设计了弯曲激波压缩二元发动机,构建了燃料在线供应与喷注控制、模型悬挂与瞬态释放及相关测量一体的试验系统,在所建立的Ma=9.62风洞模拟环境中进行了集成验证试验,定量测得了有/无氢气射流与空气/氮气超声速气流作用下二元发动机的壁面压力、吸收光谱峰值吸收率、轴向力等数据,并利用纹影观测到了进气道唇口与燃烧室部位的波系特征.多次试验所得的壁面压力、峰值吸收率、轴向力随时间变化曲线均存在2 ms以上的平台,表明二元发动机建立了准定常流动.冷热态及氮气对照组对应的壁面压力分布、峰值吸收率、轴向力等数据呈现出了明显不同,且二者规律近似一致,一方面说明所建立的模拟流场、燃烧诊断技术、发动机推阻测量技术是有效的,另一方面也表明二元发动机实现了点火燃烧、获得有效热功转换,为后续相关研究奠定了良好的基础.
-
关键词:
- FD-21高焓激波风洞 /
- Ma=10超燃冲压发动机 /
- 自由射流试验 /
- 重模型自由飞技术 /
- 吸收光谱测量技术
Abstract: Multiple experimental techniques were explored to test and verify the scramjet performance at Mach number above 8 in FD-21 shock tunnel. The piston driver ability was further improved to obtain the stagnation simulation conditions of 18.66 MPa and 3 950 K, together with the freestream conditions of Mach number of 9.62, static pressure of 436.6 Pa and velocity of 3 km/s. Furthermore, two key experimental techniques were established, involving the tunable diode laser absorption spectroscopy (TDLAS) for combustion diagnosis and the large-scale free-flight force measurement technique for scramjet testing. And subsequently, a two-dimensional curved shock compression scramjet model (2DSM) was designed, together with a set-up of the free-flight system integrated with hydrogen on-board supply/injection control and data acquisition. A series of free-jet experiments were performed at the above-mentioned test conditions, including airflow with/without hydrogen injection and the cross check shots with nitrogen test gas. Those data were quantitatively obtained including wall pressure, peak absorption, and axial force, as well as schlieren images at inlet and combustor. A plateau lasted over 2 ms exists in the time distributions of wall pressure, peak absorption, axial force, indicating the quasi-steady flow establishment of 2DSM. The consistency of those data was observed over shots, verifying that these techniques were effective for scramjet performance measurement. An inner net thrust as well as a remarkable increase in wall pressure was achieved between these hot and cold shots, where the hot shots denote the cases of airflow with hydrogen injection and the cold shots denote those of the airflow without hydrogen injection or nitrogen-flow with hydrogen injection. These phenomena observed indicate the occurrence of hydrogen igniting and burning, together with obvious conversion of heat into power. The present achievements are helpful for experimental investigation of high Mach number scramjets. -
表 1 FD-21风洞总压18.66 MPa、总温3 950 K模拟条件下名义Ma=10喷管出口参数
Table 1. Freestream parameters of the simulated Ma=10 conditions in FD-21 shock tunnel
P∞/Pa T∞/K Tvib∞/K U∞/(m/s) Ma∞ CN2, ∞/(%) CO2, ∞/(%) CNO, ∞/(%) CO, ∞/(%) 436.6 257.5 1 478 3 000 9.62 74.32 20.80 4.85 0.03 表 2 基于二元发动机模型的验证试验概况
Table 2. Test information of 2DSM
Shot No. test gas model equivalence
ratiomeasure methods 2018 air 2DSM-A 0 piezoresistive sensors 2019 air 2DSM-A 0 2020 air 2DSM-A 0 piezoresistive sensors, high-speed photography, accelerometer 2021 air 2DSM-A 0.416 2022 air 2DSM-A 0.358 2023 air 2DSM-B 0.346 piezoresistive sensors, high-speed Schlieren, accelerometer, TDLAS 2024 air 2DSM-B 0.360 2025 nitrogen 2DSM-B 0.347 2026 air 2DSM-B 0 表 3 TDLAS测得的温度与水蒸气(H2O)分压(2023车次, ϕ=0.346)
Table 3. Time-averaged temperature and partial pressure of water vapor from TDLAS(shot No. 2023, ϕ=0.346)
light-path time-averaged temperature/K time-averaged partial pressure of H2O/Pa V1 1 215.8 203.7 V2 1 194.8 207.9 H1 1 195.6 174.7 H2 1 193.4 196.1 mean value 1 199.9 195.6 max error 1.3% 10.7% 表 4 基于自由飞原理测得的不同工况下二元矩形发动机模型的轴向力数据
Table 4. Axial force on 2DSM-A and 2DSM-B measured by large-scale free-flight techniques for different shots
Shot No. test gas equivalence ratio model axial accelera-tion/(m/s2) dimensionless aixal force dimensionless inner net force between hot and cold shots 2020 air 0 2DSM-A 14.08 65.70 0 2021 air 0.416 2DSM-A 16.80 91.17 -25.47 2022 air 0.358 2DSM-A 11.44 52.39 13.31 2023 air 0.346 2DSM-B 21.28 105.44 14.16 2024 air 0.360 2DSM-B 21.82 113.88 5.72 2025 nitrogen 0.347 2DSM-B 24.34 119.60 0 -
[1] 俞刚, 范学军. 超声速燃烧与高超声速推进[J]. 力学进展, 2013, 43(5): 449-471. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201305001.htmYu G, Fan X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5): 449-471(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201305001.htm [2] Curran E T. Scramjet engines: the first forty years[J]. Journal of Propulsion and Power, 2001, 17(6): 1138-1148. doi: 10.2514/2.5875 [3] Gu S, Olivier H. Capabilities and limitations of existing hypersonic facilities[J]. Progress in Aerospace Sciences, 2020, 113: 100607. doi: 10.1016/j.paerosci.2020.100607 [4] Stalker R J, Paull A, Mee D J, et al. Scramjets and shock tunnels-the Queensland experience[J]. Progress in Aerospace Sciences, 2005, 41(6): 471-513. doi: 10.1016/j.paerosci.2005.08.002 [5] Paull A, Stalker R J, Mee D J. Experiments on supersonic combustion ramjet propulsion in a shock tunnel[J]. Journal of Fluid Mechanics, 1995, 296: 159-183. doi: 10.1017/S0022112095002096 [6] Robinson M J, Mee D J, Paull A. Scramjet lift, thrust and pitching-moment characteristics measured in a shock tunnel[J]. Journal of Propulsion and Power, 2006, 22(1): 85-95. doi: 10.2514/1.15978 [7] McGilvray M, Kirchhartz R, Jazra T. Comparison of Mach 10 scramjet measurements from different impulse facilities[J]. AIAA Journal, 2010, 48(8): 1647-1651. doi: 10.2514/1.J050025 [8] Doherty L J. An experimental investigation of an airframe integrated three-dimensional scramjet engine at a Mach 10 flight condition[D]. Brisbane: The University of Que-ensland, 2014. [9] Barth J. Mixing and combustion enhancement in a Mach 12 shape-transitioning scramjet engine[D]. Brisbane: The University of Queensland, 2014. [10] Vanyai T. Experimental investigation of a 3D thermal compression scramjet using advanced optical techniques[D]. Brisbane: The University of Queensland, 2018. [11] Denman Z J, Chan W Y, Brieschenk S, et al. Ignition experiments of hydrocarbons in a Mach 8 shape-transitioning scramjet engine[J]. Journal of Propulsion and Power, 2016, 32(6): 1462-1471. doi: 10.2514/1.B36099 [12] Denman Z J, Wheatley V, Smart M K, et al. Supersonic combustion of hydrocarbons in a shape-transitioning hypersonic engine[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2883-2891. doi: 10.1016/j.proci.2016.08.081 [13] Vanyai T, Grieve S, Street O, et al. Fundamental scramjet combustion experiments using hydrocarbon fuel[J]. Journal of Propulsion and Power, 2019, 35(5): 953-963. doi: 10.2514/1.B37472 [14] Hiraiwa T, Ito K, Sato S, et al. Recent progress in scramjet/combined cycle engines at JAXA, Kakuda space center[J]. Acta Astronautica, 2008, 63(5/6): 565-574. [15] Takahashi M, Sunami T, Tanno H, et al. Performance characteristics of a scramjet engine at Mach 10 to 15 flight condition[R]. AIAA 2005-3350, 2005. [16] Takahashi M, Komuro T, Sato K, et al. Performance characteristics of scramjet engine with different combustor shapes at hypervelocity condition over Mach 10 flight[R]. AIAA 2007-5395, 2007. [17] Sunami T, Itoh K, Satoh K, et al. Mach 8 ground tests of the hypermixer scramjet for HyShot-Ⅳ flight experiment[R]. AIAA 2006-8062, 2006. [18] Schramm J M, Sunami T, Ito K, et al. Experimental investigation of supersonic combustion in the HIEST and HEG free piston shock tunnels[R]. AIAA 2010-7122, 2010. [19] Marie T, Hideyuki T, Tomoyuki K. Free-flight force measurement technique for scramjet powered vehicle in shock tunnel[C]. Proceedings of the 32nd International Symposium on Shock Waves (ISSW322019), 2019. [20] Hannemann K, Schramm J M, Wagner A, et al. A closely coupled experimental and numerical approach for hypersonic and high enthalpy flow investigations utilising the HEG shock tunnel and the DLR TAU code[R]. RTO-EN-AVT-186, 2010. [21] Schramm J M, Karl S, Hannemann K, et al. Ground testing of the Hyshot Ⅱ scramjet configuration in HEG[R]. AIAA 2008-2547, 2008. [22] Laurence S J, Karl S, Schramm M J, et al. Transient fluid-combustion phenomena in a model scramjet[J]. Journal of Fluid Mechanics, 2013, 722: 85-120. doi: 10.1017/jfm.2013.56 [23] Laurence S J, Lieber D, Schramm J M, et al. Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part Ⅰ: shock-tunnel experiments[J]. Combustion and Flame, 2015, 162(4): 921-931. doi: 10.1016/j.combustflame.2014.09.016 [24] Larsson J, Laurence S, Bermejo-Moreno I, et al. Incipi-ent thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part Ⅱ: large eddy simulations[J]. Combustion and Flame, 2015, 162(4): 907-920. doi: 10.1016/j.combustflame.2014.09.017 [25] Hannemann K, Schramm J M, Karl S, et al. Free flight testing of a scramjet engine in a large scale shock tunnel[R]. AIAA 2015-3608, 2015. [26] Hannemann K, Schramm J M, Karl S, et al. Enhance-ment of free flight force measurement technique for scramjet engine shock tunnel testing[R]. AIAA 2017-2235, 2017. [27] Karl S, Schramm J M, Hannemann K. Post-test analysis of the LAPCAT-Ⅱ subscale scramjet[J]. CEAS Space Journal, 2020, 12(2): 385-395. [28] 王培勇, 陈明, 邢菲, 等. Hyshot超燃冲压发动机的CFD数值模拟[J]. 航空动力学报, 2014, 29(5): 1020-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201405005.htmWang P Y, Chen M, Xing F, et al. CFD numerical simulation of Hyshot scramjet[J]. Journal of Aerospace Power, 2014, 29(5): 1020-1028(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201405005.htm [29] 周建兴, 汪颖. 高马赫数超燃冲压发动机性能数值研究[J]. 推进技术, 2014, 35(4): 433-441. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201404001.htmZhou J X, Wang Y. Numerical investigation on performance of a high Mach number scramjet[J]. Journal of Propulsion Technology, 2014, 35(4): 433-441(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201404001.htm [30] 张时空, 李江, 黄志伟, 等. 高马赫数来流超燃冲压发动机燃烧流场分析[J]. 宇航学报, 2017, 38(1): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201701011.htmZhang S K, Li J, Huang Z W, et al. Combustion flow field analysis of a scramjet engine at high Mach number[J]. Journal of Astronautics, 2017, 38(1): 80-88(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201701011.htm [31] 钟萍, 孙宗祥, 傅邦杰, 等. 高超声速流动模拟需求及地面试验能力分析[J]. 飞航导弹, 2012(3): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201203006.htmZhong P, Sun Z X, Fu B J, et al. Simulation requirements of hypersonic flow and ground test ability[J]. Aerodynamic Missile Journal, 2012(3): 20-26(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201203006.htm [32] 姚轩宇. JF-12激波风洞超燃冲压发动机实验及污染气体效应影响研究[D]. 北京: 中国科学院大学, 2015.Yao X Y. Experimental study on the scramjet in JF-12 shock tunnel and its vitiation effects[D]. Beijing: University of Chinese Academy of Sciences, 2015(in Chinese). [33] 姚轩宇, 王春, 喻江, 等. JF12激波风洞高Mach数超燃冲压发动机实验研究[J]. 气体物理, 2019, 4(5): 25-31. doi: 10.19527/j.cnki.2096-1642.0788Yao X Y, Wang C, Yu J, et al. High Mach number scramjet engine tests in JF12 shock tunnel[J]. Physics of gases, 2019, 4(5): 25-31(in Chinese). doi: 10.19527/j.cnki.2096-1642.0788 [34] 刘云峰. 斜爆轰发动机理论与验证[C]. 第十九届全国激波与激波管学术会议. 厦门: CAAA, 2020.Liu Y F. Theory and verification of oblique detonation engine[C]. The 19th National Shock Wave Conference. Xiamen: CAAA, 2020(in Chinese). [35] Ma K F, Zhang Z J, Liu Y F, et al. Aerodynamic principles of shock-induced combustion ramjet engines[J]. Aerospace Science and Technology, 2020, 103: 105901. doi: 10.1016/j.ast.2020.105901 [36] 翟小飞, 张扣立, 白菡尘, 等. 激波加热超声速燃烧室直连式试验台喷管中的化学非平衡流动[J]. 空气动力学学报, 2020, 38(2): 268-273. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002008.htmZhai X F, Zhang K L, Bai H C, et al. Chemical nonequilibrium flow in nozzle of a supersonic combustor direct-connected test bed with shock heating[J]. Acta Aerodynamica Sinica, 2020, 38(2): 268-273(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002008.htm [37] 欧阳浩, 邓维鑫, 邢建文, 等. 飞行Ma10条件燃烧特性试验研究[C]. 第十九届全国激波与激波管学术会议. 厦门: CAAA, 2020.Ouyang H, Deng W X, Xing J W, et al. Experimental study on supersonic combustion at flight Mach number of 10[C]. The 19th National Shock Wave Conference. Xiamen: CAAA, 2020(in Chinese). [38] 吴里银, 孔小平, 李贤, 等. 马赫数10超燃冲压发动机激波风洞实验研究[J]. 推进技术, 2021, 42(12): 2818-2825. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202112019.htmWu L G, Kong X P, Li X, et al. Shock tunnel experiments of a Ma10 scramjet[J]. Journal of Propulsion Technology, 2021, 42(12): 2818-2825(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202112019.htm [39] 卢洪波, 陈星, 谌君谋, 等. 新建高焓激波风洞Ma=8飞行模拟条件的实现与超燃实验[J]. 气体物理, 2019, 4(5): 13-24. doi: 10.19527/j.cnki.2096-1642.0782Lu H B, Chen X, Shen J M, et al. Flight condition achievement of Mach number 8 in a new shock tunnel of CAAA and its scramjet experimental investigation[J]. Physics of Gases, 2019, 4(5): 13-24(in Chinese). doi: 10.19527/j.cnki.2096-1642.0782 [40] Lu H B, Chen X, Chen L, et al. Preliminary commissioning of hydrogen supersonic combustion in FD-21 free piston driven shock tunnel[C]. 32nd International Symposium on Shock Waves (ISSW32), OR-03-248, Singa-pore, 2019. [41] 陈勇富, 卢洪波, 文帅, 等. 基于图像识别的高焓激波风洞发动机推阻测量技术[C]. 第十九届全国激波与激波管学术会议. 厦门: CAAA, 2020.Chen Y F, Lu H B, Wen S, et al. Scramjet thrust measurement techniques of image-detecting in a high enthalpy shock tunnel[C]. The 19th National Shock Wave Confer-ence. Xiamen: CAAA, 2020(in Chinese). [42] 卢洪波. 高焓激波风洞燃烧空气动力学试验技术的探索与进展[C]. 第十九届全国激波与激波管学术会议大会邀请报告. 厦门: CAAA, 2020.Lu H B. Exploration and development of aerodynamic experimental techniques coupled with combustion in a high enthalpy shock tunnel[C]. The 19th National Shock Wave Conference. Xiamen: CAAA, 2020(in Chinese). [43] 陈星, 谌君谋, 毕志献, 等. 自由活塞高焓脉冲风洞发展历程及试验能力综述[J]. 实验流体力学, 2019, 33(4): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201904010.htmChen X, Shen J M, Bi Z X, et al. Review on the development of the free-piston high enthalpy impulse wind tunnel and its testing capacities[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 65-80(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201904010.htm [44] Park C. Review of chemical-kinetic problems of future NASA mission, I: earth entries[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(3): 385-398. doi: 10.2514/3.431 [45] 张堃元. 基于弯曲激波压缩系统的高超声速进气道反设计研究进展[J]. 航空学报, 2015, 36(1): 274-288. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501021.htmZhang K Y. Research progress of hypersonic inlet reverse design based on curved shock compression system[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 274-288(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501021.htm [46] Lu F, Marren D. Advanced hypersonic test facilities[M]. Reston: American Institute of Aeronautics and Astronautics, 2002: 198. [47] 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1): 245-260. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501019.htmWu Y C, He Y Y, He W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 245-260(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501019.htm [48] Engelund W C, Holland S D, Cockrell C E Jr, et al. Aerodynamic database development for the hyper-X airframe integrated scramjet propulsion experiments[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 803-810. doi: 10.2514/2.3768 -