主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超燃冲压发动机喷管推力性能理论预测

韩信 张子健 马凯夫 刘云峰

韩信, 张子健, 马凯夫, 刘云峰. 超燃冲压发动机喷管推力性能理论预测[J]. 气体物理, 2022, 7(1): 1-8. doi: 10.19527/j.cnki.2096-1642.0888
引用本文: 韩信, 张子健, 马凯夫, 刘云峰. 超燃冲压发动机喷管推力性能理论预测[J]. 气体物理, 2022, 7(1): 1-8. doi: 10.19527/j.cnki.2096-1642.0888
HAN Xin, ZHANG Zi-jian, MA Kai-fu, LIU Yun-feng. Theoretical Prediction on the Nozzle Thrust of Scramjets[J]. PHYSICS OF GASES, 2022, 7(1): 1-8. doi: 10.19527/j.cnki.2096-1642.0888
Citation: HAN Xin, ZHANG Zi-jian, MA Kai-fu, LIU Yun-feng. Theoretical Prediction on the Nozzle Thrust of Scramjets[J]. PHYSICS OF GASES, 2022, 7(1): 1-8. doi: 10.19527/j.cnki.2096-1642.0888

超燃冲压发动机喷管推力性能理论预测

doi: 10.19527/j.cnki.2096-1642.0888
基金项目: 

国家自然科学基金 11672312

详细信息
    作者简介:

    韩信(1996-)男, 硕士, 主要研究方向为爆轰、激波诱导燃烧. E-mail: hanxin@imech.ac.cn

    通讯作者:

    刘云峰(1971-)男, 高工, 主要研究方向为激波与爆轰物理、激波风洞. E-mail: liuyunfeng@imech.ac.cn

  • 中图分类号: V235.21

Theoretical Prediction on the Nozzle Thrust of Scramjets

  • 摘要: 超燃冲压发动机发展60多年来,虽然取得了很大的进步,但是对其推力大小的理论评估是一个没有很好解决的问题. 超燃冲压发动机的推力主要由喷管产生,因此重点研究了喷管的推力特性. 将燃烧室出口参数作为喷管入口边界条件,利用等熵膨胀理论,通过对喷管壁面压力积分,得到了简化的无量纲推力公式,获得了影响推力大小的关键参数和物理规律. 理论分析表明,对于给定的喷管,超声速燃烧对于提高推力是有利的. 提高推力的主要途径就是提高燃烧气体的压力. 理论分析结果与数值结果吻合比较好,证明了理论分析的准确性.

     

  • 图  1  亚燃冲压发动机和超燃冲压发动机的示意图[21]

    Figure  1.  Schematics of ramjet and scramjet[21]

    图  2  无量纲推力与喷管出口Mach数的关系曲线

    Figure  2.  Relationship between dimensionless thrust and Mach number at nozzle outlet

    图  3  超声速燃烧喷管产生的无量纲推力与入口Mach数的关系

    Figure  3.  Relationship between dimensionless thrust and inlet Mach number for supersonic combustion nozzles

    图  4  喷管无量纲推力的拟合结果

    Figure  4.  Exact solution and fitting curve of dimensionless thrust

    图  5  喷管喉道参数与出口参数的关系

    Figure  5.  Exact solution and fitting curve of critical parameters

    图  6  斜爆轰发动机示意图(单位: mm)

    Figure  6.  Schematic of the ODE (dimension in mm)

    图  7  斜爆轰发动机的三维设计图

    Figure  7.  Three-dimensional stereograph of the ODE

    图  8  燃烧室计算域和网格图

    Figure  8.  Meshes and blocks of the ODE combustor and the nozzle

    图  9  斜爆轰模态流场压力云图和沿流线Mach数分布

    Figure  9.  Flow field of the ODE combustor and the nozzle at oblique detonation

    图  10  正爆轰模态流场压力云图和沿流线Mach数分布

    Figure  10.  Flow field of the NDE combustor and the nozzle at normal detonation

    图  11  斜爆轰模态的喷管入口和出口参数分布

    Figure  11.  Distributions of nozzle inlet and outlet parameters for the oblique detonation

    图  12  正爆轰模态的喷管入口和出口参数分布

    Figure  12.  Distributions of nozzle inlet and outlet parameters for the normal detonation

    图  13  正爆轰模态燃烧室流场数值纹影图

    Figure  13.  Numerical schlieren in the NDE combustor

    表  1  理论推力与数值模拟壁面压力积分推力比较

    Table  1.   Comparison of theoretical results and numerical results

    mode p1/Pa Ma1 A1/m2 p2/Pa Ma2 A2/m2 Ftheory/N Ftheory/(p1A1) FCFD/N FCFD/(p1A1) discrepancy/(%)
    ODW 29 863.8 1.36 0.076 3 6 442.6 2.269 0.183 4 1 274 0.56 1 298 0.57 -1.78
    NDW 13 087.3 1.76 0.076 3 3 221.2 2.55 0.183 4 635 0.63 611 0.61 3.28
    下载: 导出CSV
  • [1] Ferri A. Review of problems in application of supersonic combustion[J]. The Journal of the Royal Aeronautical Society, 1964, 68(645): 575-597. doi: 10.1017/S0368393100080391
    [2] Ferri A. Review of scramjet propulsion technology[J]. Journal of Aircraft, 1968, 5(1): 3-10. doi: 10.2514/3.43899
    [3] Ferri A. Mixing-controlled supersonic combustion[J]. Annual Review of Fluid Mechanics, 1973, 5: 301-338. doi: 10.1146/annurev.fl.05.010173.001505
    [4] Curran E T. Scramjet engines: the first forty years[J]. Journal of Propulsion and Power, 2001, 17(6): 1138-1148. doi: 10.2514/2.5875
    [5] Curran E T, Heiser W H, Pratt D T. Fluid phenomena in scramjet combustion systems[J]. Annual Review of Fluid Mechanics, 1996, 28: 323-360. doi: 10.1146/annurev.fl.28.010196.001543
    [6] Fry R S. A century of ramjet propulsion technology evolu-tion[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58. doi: 10.2514/1.9178
    [7] 俞刚, 范学军. 超声速燃烧与高超声速推进[J]. 力学进展, 2013, 43(5): 449-471. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201305001.htm

    Yu G, Fan X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5): 449-471(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201305001.htm
    [8] 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6): 716-739. doi: 10.3321/j.issn:1000-0992.2009.06.011

    Wang Z G, Liang J H, Ding M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6): 716-739(in Chinese). doi: 10.3321/j.issn:1000-0992.2009.06.011
    [9] Urzay J. Supersonic combustion in air-breathing propul-sion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627. doi: 10.1146/annurev-fluid-122316-045217
    [10] Peebles C. Eleven seconds into the unknown: a history of the hyper-X program[M]. AIAA, 2011.
    [11] Tsien H S, Beilock M. Heat source in a uniform flow[J]. Journal of the Aeronautical Sciences, 1949: 756-756.
    [12] Birzer C, Doolan C J. Quasi-one-dimensional model of hydrogen-fueled scramjet combustors[J]. Journal of Propulsion and Power, 2009, 25(6): 1220-1225. doi: 10.2514/1.43716
    [13] O'Brien T F, Starkey R P, Lewis M J. Quasi-one-dimensional high-speed engine model with finite-rate chemistry[J]. Journal of Propulsion and Power, 2001, 17(6): 1366-1374. doi: 10.2514/2.5889
    [14] Vanyai T, Bricalli M, Brieschenk S, et al. Scramjet performance for ideal combustion processes[J]. Aerospace Science and Technology, 2018, 75: 215-226. doi: 10.1016/j.ast.2017.12.021
    [15] Riggins D W, Mcclinton C R, Rogers R C, et al. Investigation of scramjet injection strategies for high Mach number flows[J]. Journal of Propulsion and Power, 1995, 11(3): 409-418. doi: 10.2514/3.23859
    [16] Riggins D W, Mcclinton C R, Vitt P H. Thrust losses in hypersonic engines Part 1: Methodology[J]. Journal of Propulsion and Power, 1997, 13(2): 281-287. doi: 10.2514/2.5160
    [17] Sislian J P, Martens R P, Schwartzentruber T E, et al. Numerical simulation of a real shcramjet flowfield[J]. Journal of Propulsion and Power, 2006, 22(5): 1039-1048. doi: 10.2514/1.14895
    [18] Chan J, Sislian J P, Alexander D. Numerically simulated comparative performance of a scramjet and shcramjet at Mach 11[J]. Journal of Propulsion and Power, 2010, 26(5): 1125-1134. doi: 10.2514/1.48144
    [19] Alexander D C, Sislian J P. Computational study of the propulsive characteristics of a shcramjet engine[J]. Journal of Propulsion and Power, 2008, 24(1): 34-44. doi: 10.2514/1.29951
    [20] Wang Y W, Sislian J P. Numerical simulation of gaseous hydrocarbon fuel injection in a hypersonic inlet[J]. Journal of Propulsion and Power, 2010, 26(5): 1114-1124. doi: 10.2514/1.47741
    [21] Denman Z J, Chan W Y K, Brieschenk S, et al. Ignition experiments of hydrocarbons in a Mach 8 shape-transitioning scramjet engine[J]. Journal of Propulsion and Power, 2016, 32(6): 1462-1471. doi: 10.2514/1.B36099
    [22] Zhang Z J, Ma K F, Zhang W S, et al. Numerical investigation of a Mach 9 oblique detonation engine with fuel pre-injection[J]. Aerospace Science and Technology, 2020, 105: 106054. doi: 10.1016/j.ast.2020.106054
    [23] Ma K F, Zhang Z J, Liu Y F, et al. Aerodynamic principles of shock-induced combustion ramjet engines[J]. Aerospace Science and Technology, 2020, 103: 105901. doi: 10.1016/j.ast.2020.105901
    [24] Zhang Z J, Wen C Y, Zhang W S, et al. Formation of stabilized oblique detonation waves in a combustor[J]. Combustion and Flame, 2021, 223: 423-436. doi: 10.1016/j.combustflame.2020.09.034
    [25] 沈欢, 张子健, 刘云峰, 等. 超燃冲压发动机推进性能理论分析[J]. 气体物理, 2018, 3(1): 12-19. doi: 10.19527/j.cnki.2096-1642.2018.01.002

    Shen H, Zhang Z J, Liu Y F, et al. Analysis on the propulsion performance of scramjet engine[J]. Physics of Gases, 2018, 3(1): 12-19(in Chinese). doi: 10.19527/j.cnki.2096-1642.2018.01.002
    [26] 马凯夫, 张子健, 刘云峰, 等. 斜爆轰发动机流动机理分析[J]. 气体物理, 2019, 4(3): 1-10. doi: 10.19527/j.cnki.2096-1642.0750

    Ma K F, Zhang Z J, Liu Y F, et al. Flow mechanism of oblique detonation engines[J]. Physics of Gases, 2019, 4(3): 1-10(in Chinese). doi: 10.19527/j.cnki.2096-1642.0750
    [27] Menter F R. 2-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [28] Jachimowski C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combus-tion[J]. NASA TP-2791, 1988.
    [29] 张子健. 斜爆轰推进理论、技术及其实验验证[D]. 北京: 中国科学院大学, 2020.

    Zhang Z J. Oblique detonation propulsion theory, technology and its experimental demonstration[D]. Beijing: University of Chinese Academy of Sciences, 2020(in Chinese).
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  555
  • HTML全文浏览量:  244
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2020-12-14
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回