主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

基于气体动理论的二维Karman涡街数值模拟

Numerical Simulation of Planar Karman Vortex Street Based on Gas-Kinetic Theory

  • 摘要: 基于从稀薄流到连续流的跨流域气体动理论统一算法(gas-kinetic unified algorithm,GKUA),通过数值求解考虑转动自由度激发的Boltzmann-Rykov模型方程,得到了一种跨流域非定常流动数值模拟的方法.该求解方法以Boltzmann模型方程为控制方程,在常温状态下如果考虑转动能激发的情况则选用Rykov模型.文中数值求解Rykov模型时,首先基于转动能模对速度分布函数积分以消去分子转动能量这一自变量,在速度空间应用自适应离散速度坐标法与数值积分演化更新计算技术,在位置空间应用3阶WENO空间离散格式和3阶显式Runge-Kutta时间推进.针对经典的二维Karman涡街流动现象进行数值模拟,说明该跨流域非定常流动模拟算法对于连续流区低速流动的适应性.

     

    Abstract: Based on the gas-kinetic unified algorithm (GKUA) from rarefied transition to continuum, numerical simulation technique for unsteady flows covering various flow regimes was developed by solving the Boltzmann-Rykov model equation involving molecular rotational degrees of freedom. The Rykov kinetic equation involving the effect of molecular rotational energy can be transformed into two kinetic governing equations with inelastic and elastic collisions by integrating the molecular velocity distribution function with the weight factor on the energy of rotational motion. The simultaneous equations were numerically solved by the discrete velocity ordinate (DVO) method in velocity space. Third-order WENO scheme was adopted for the physical space, and third-order explicit Runge-Kutta method was used for time evolution. Numerical simulation of the classical planar Karman vortex street was then implemented, to verify the adaptability of this unsteady simulation method on the low-speed flows in continuum.

     

/

返回文章
返回