主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

统一气体动理学方法研究进展

刘沙 王勇 袁瑞峰 张瑞 陈健锋 朱亚军 卓丛山 钟诚文

刘沙, 王勇, 袁瑞峰, 张瑞, 陈健锋, 朱亚军, 卓丛山, 钟诚文. 统一气体动理学方法研究进展[J]. 气体物理, 2019, 4(4): 1-13. doi: 10.19527/j.cnki.2096-1642.0809
引用本文: 刘沙, 王勇, 袁瑞峰, 张瑞, 陈健锋, 朱亚军, 卓丛山, 钟诚文. 统一气体动理学方法研究进展[J]. 气体物理, 2019, 4(4): 1-13. doi: 10.19527/j.cnki.2096-1642.0809
LIU Sha, WANG Yong, YUAN Rui-feng, ZHANG Rui, CHEN Jian-feng, ZHU Ya-jun, ZHUO Cong-shan, ZHONG Cheng-wen. Advance in Unified Methods Based on Gas-Kinetic Theory[J]. PHYSICS OF GASES, 2019, 4(4): 1-13. doi: 10.19527/j.cnki.2096-1642.0809
Citation: LIU Sha, WANG Yong, YUAN Rui-feng, ZHANG Rui, CHEN Jian-feng, ZHU Ya-jun, ZHUO Cong-shan, ZHONG Cheng-wen. Advance in Unified Methods Based on Gas-Kinetic Theory[J]. PHYSICS OF GASES, 2019, 4(4): 1-13. doi: 10.19527/j.cnki.2096-1642.0809

统一气体动理学方法研究进展

doi: 10.19527/j.cnki.2096-1642.0809
基金项目: 

国家自然科学基金 11902266

国家数值风洞工程 NNW2019ZT3-A09

详细信息
    作者简介:

    刘沙(1986-)男, 副教授, 主要研究方向为近空间高超声速流动计算方法.E-mail:shaliu@nwpu.edu.cn

    通讯作者:

    钟诚文(1966-)男, 教授, 主要研究方向为计算流体力学和稀薄气体动力学.E-mail:zhongcw@nwpu.edu.cn

  • 中图分类号: O356

Advance in Unified Methods Based on Gas-Kinetic Theory

  • 摘要: 在临近空间高超声速飞行器气动载荷、航天飞行器变轨/调姿、微尺度元器件传质/传热等科学和工程实践中,存在着大量的时序多流域(多尺度)流动问题以及位于单一流场中的复杂多流域问题(局部稀薄问题),对数值预测工作提出挑战.因此,近年来从介观气体动理学基础上发展出了一大类将连续流与稀薄流进行统一计算的高效数值方法,包括确定论形式的UGKS,GKUA和DUGKS方法,以及粒子形式的USP-BGK和UGKWP方法.文章围绕着确定论和统计粒子两类统一方法的最新研究进展进行回顾和分析,重点关注在每种方法中全流域统一性质的来源与实现方式、目前已取得的关键进展以及该方法的扩展性和应用价值.

     

  • 图  1  天宫的双舱结构在海拔62 km处GKUA提供的流场和物面信息[5]

    Figure  1.  Flow field and object information of the two-capsule vehicle of Tiangong-1 spacecraft at altitude 62 km predicted by the GKUA[5]

    图  2  Apollo返回舱再入大气层的UGKS模拟(温度云图)[27]

    Figure  2.  UGKS simulation of Apollo re-entry capsule (temperature contours)[27]

    图  3  Crookes辐射计的动网格UGKS模拟(温度云图)[30]

    Figure  3.  UGKS simulation of Crookes radiometer with moving mesh(temperature contours)[30]

    图  4  稀薄环境喷管流动问题的动网格UGKS模拟(流线和压强云图)[31]

    Figure  4.  UGKS simulation of nozzle flow in rarefied environment with moving meshes(streamlines and pressure contours)[31]

    图  5  颗粒射流交叉/壁面反射的UGKS模拟[34]

    Figure  5.  Intersection and wall reflection of particle flow predicted by UGKS[34]

    图  6  Re=1 000顶盖驱动方腔流垂直中心线和水平中心线上的压力分布对比[54]

    Figure  6.  Pressure profiles along the central-vertical line and central-horizontal line of a lid-driven cavity flow at Re=1 000[54]

    图  7  BKG和DUGKS满足顶盖驱动方腔流稳定计算所能取得的最大时间步长(Δt/τ)[56]

    Figure  7.  Maximum time step (Δt/τ) for BKG and DUGKS in a lid-driven cavity flow[56]

    图  8  At=0.1(ρ=1.1/0.9), Re=3 000时Rayleigh-Taylor界面不稳定模式的时间演化[75]

    Figure  8.  Evolution of interface patterns of Rayleigh-Taylor instability at At=0.1(ρ=1.1/0.9), Re=3 000[75]

    图  9  一维封闭管道中单侧平板振荡引起的一维稀薄气体流动中, 一个振荡周期不同时刻两组Knudsen数下速度型发展对比[81]

    Figure  9.  Comparisons of velocity profiles for rarefied flow caused by one-sided plate oscillation at two different Kn[81]

    图  10  UGKS和UGKWP沿驻点线的压力和温度(Ma=20, Kn=1)[92]

    Figure  10.  Pressure and temperature profiles along the stagnation line of cylinder predicted by UGKS and UGKWP (Ma=20, Kn=1)[92]

    图  11  圆柱绕流算例(Ma=20)单元模拟粒子数量[92]

    Figure  11.  Numbers of simulation particles per cell for the cylinder flow at Ma=20[92]

    表  1  宏观量预估的隐式UGKS计算方腔流算例的加速效率[45]计算状态

    Table  1.   Efficiency of the implicit UGKS with macroscopic prediction for cavity flow[45]

    states explicit UGKS implicit UGKS rates
    steps time/min steps time/min
    Kn=10 9 082 587.5 205 17.2 34.2
    Kn=1 4 089 201.6 188 12.0 16.8
    Kn=0.075 7 005 176.3 197 6.4 27.4
    Re=100 357 369 2 823.2 1 443 14.5 195.1
    Re=1 000 843 234 6 709.2 3 378 32.9 204.2
    下载: 导出CSV

    表  2  UGKS和UGKWP计算效率和内存需求对比(Ma=20, Kn=1)[92]

    Table  2.   Comparison of computational time and memory cost between the UGKS and UGKWP(Ma=20, Kn=1)[92]

    methods CPU time memory cost
    UGKS 429 h 22.3 GB
    UGKWP 36.1 min 100 MB
    ratio 713 228
    下载: 导出CSV
  • [1] Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. New York:Oxford University Press, 1994.
    [2] Xu K, Huang J C. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20):7747-7764. doi: 10.1016/j.jcp.2010.06.032
    [3] Xu K. Direct modeling for computational fluid dynamics:construction and application of unified gas-kinetic sche-mes[M]. Hackensack:World Scientific, 2015.
    [4] 李志辉, 张涵信.稀薄流到连续流的气体运动论统一数值算法初步研究[J].空气动力学学报, 2000, 18(3):255-263. doi: 10.3969/j.issn.0258-1825.2000.03.001

    Li Z H, Zhang H X. Study on gas kinetic algorithm for flows from rarefied transition to continuum[J]. Acta Aerodynamica Sinica, 2000, 18(3):255-263(in Chinese). doi: 10.3969/j.issn.0258-1825.2000.03.001
    [5] Li Z H, Peng A P, Ma Q, et al. Gas-kinetic unified algorithm for computable modeling of Boltzmann equation and application to aerothermodynamics for falling disintegration of uncontrolled Tiangong-No.1 spacecraft[J]. Advances in Aerodynamics, 2019, 1:4. doi: 10.1186/s42774-019-0009-4
    [6] Guo Z L, Xu K, Wang R J. Discrete unified gas kinetic scheme for all Knudsen number flows:low-speed isother-mal case[J]. Physical Review E, 2013, 88(3):033305. doi: 10.1103/PhysRevE.88.033305
    [7] Guo Z L, Wang R J, Xu K. Discrete unified gas kinetic scheme for all Knudsen number flows. Ⅱ. Thermal compressible case[J]. Physical Review E, 2015, 91(3):033313. doi: 10.1103/PhysRevE.91.033313
    [8] Goldstein D, Sturtevant B, Broadwell J E. Investigations of the motion of discrete-velocity gases[R]. 1989: 100-117.
    [9] Yang J Y, Huang J C. Rarefied flow computations using nonlinear model Boltzmann equations[J]. Journal of Computational Physics, 1995, 120(2):323-339. doi: 10.1006/jcph.1995.1168
    [10] Mieussens L. Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries[J]. Journal of Computational Physics, 2000, 162(2):429-466. doi: 10.1006/jcph.2000.6548
    [11] Li Z H, Zhang H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2):708-738. doi: 10.1016-j.jcp.2003.08.022/
    [12] Titarev V A. Conservative numerical methods for model kinetic equations[J]. Computers & Fluids, 2007, 36(9):1446-1459. http://cn.bing.com/academic/profile?id=c6f7320c0f4765cd787bc6ce65fb33bf&encoded=0&v=paper_preview&mkt=zh-cn
    [13] Xu K, Huang J C. An improved unified gas-kinetic scheme and the study of shock structures[J]. IMA Journal of Applied Mathematics, 2011, 76(5):698-711. doi: 10.1093/imamat/hxr002
    [14] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3):511-525. doi: 10.1103/PhysRev.94.511
    [15] Xu K, Liu C. A paradigm for modeling and computation of gas dynamics[J]. Physics of Fluids, 2017, 29(2):026101. doi: 10.1063/1.4974873
    [16] Huang J C, Xu K, Yu P B. A unified gas-kinetic scheme for continuum and rarefied flows Ⅲ:Microflow simula-tions[J]. Communications in Computational Physics, 2013, 14(5):1147-1173. doi: 10.4208/cicp.190912.080213a
    [17] Yu P B. A unified gas kinetic scheme for all Knudsen number flows[D]. Hong Kong: Hong Kong University of Science and Technology, 2013.
    [18] Liu S, Zhong C W, Bai J. Unified gas-kinetic scheme for microchannel and nanochannel flows[J]. Computers & Mathematics with Applications, 2015, 69(1):41-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d91c2625c0b4d57aa4a7cab46d76bbc
    [19] Wang R J, Xu X P, Xu K, et al. Onsager's cross coupling effects in gas flows confined to micro-channels[J]. Physical Review Fluids, 2016, 1(4):044102. doi: 10.1103/PhysRevFluids.1.044102
    [20] Huang J C, Xu K, Yu P B. A unified gas-kinetic scheme for continuum and rarefied flows Ⅱ:multi-dimensional cases[J]. Communications in Computational Physics, 2012, 12(3):662-690. doi: 10.4208/cicp.030511.220911a
    [21] Wang R J, Xu K. The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme[J]. Acta Mechanica Sinica, 2012, 28(4):1022-1029. doi: 10.1007/s10409-012-0116-5
    [22] Wang R J, Xu K. Unified gas-kinetic simulation of slider air bearing[J]. Theoretical and Applied Mechanics Letters, 2014, 4(2):022001. doi: 10.1063/2.1402201
    [23] Liu C, Xu K, Sun Q H, et al. A unified gas-kinetic scheme for continuum and rarefied flows Ⅳ:Full Boltzmann and model equations[J]. Journal of Computational Physics, 2016, 314:305-340. doi: 10.1016/j.jcp.2016.03.014
    [24] Rykov V A. A model kinetic equation for a gas with rotational degrees of freedom[J]. Fluid Dynamics, 1975, 10(6):959-966. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23b71099bce452a2e56f11d08fcb1562
    [25] Liu S, Yu P B, Xu K, et al. Unified gas-kinetic scheme for diatomic molecular simulations in all flow regimes[J]. Journal of Computational Physics, 2014, 259:96-113. doi: 10.1016/j.jcp.2013.11.030
    [26] 刘沙.统一气体动理论格式研究[D].西安: 西北工业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10699-1015581075.htm

    Liu S. Unified gas-kinetic scheme[D]. Xi'an: Northwestern Polytechnical University, 2015(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10699-1015581075.htm
    [27] 张贺.统一气体动理论格式分子振动模型研究[D].西安: 西北工业大学, 2015.

    Zhang H. A kinetic model with vibration for unified gas-kinetic scheme[D]. Xi'an: Northwestern Polytechnical University, 2015(in Chinese).
    [28] Wang Z, Yan H, Li Q B, et al. Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes[J]. Journal of Computational Physics, 2017, 350:237-259. doi: 10.1016/j.jcp.2017.08.045
    [29] Li S Y, Li Q B. Thermal non-equilibrium effect of small-scale structures in compressible turbulence[J]. Modern Physics Letters B, 2018, 32(12n13):1840013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f7feaed9f999caabfb02c2541ea0b7a5
    [30] Chen S Z, Xu K, Lee C B. The dynamic mechanism of a moving Crookes radiometer[J]. Physics of Fluids, 2012, 24(11):111701. doi: 10.1063/1.4765353
    [31] Chen S Z, Xu K, Lee C B, et al. A unified gas kinetic scheme with moving mesh and velocity space adapta-tion[J]. Journal of Computational Physics, 2012, 231(20):6643-6664. doi: 10.1016/j.jcp.2012.05.019
    [32] Wang R J, Xu K. Unified gas-kinetic scheme for multi-species non-equilibrium flow[C]. AIP Conference Proceedings, 2014, 1628(1): 970-975.
    [33] Xiao T B, Xu K, Cai Q D. A unified gas-kinetic scheme for multiscale and multicomponent flow transport[J]. Applied Mathematics and Mechanics, 2019, 40(3):355-372. doi: 10.1007/s10483-019-2446-9
    [34] Liu C, Wang Z, Xu K. A unified gas-kinetic scheme for continuum and rarefied flows Ⅵ:Dilute disperse gas-particle multiphase system[J]. Journal of Computational Physics, 2019, 386:264-295. doi: 10.1016/j.jcp.2018.12.040
    [35] Xiao T B, Cai Q D, Xu K. A well-balanced unified gas-kinetic scheme for multiscale flow transport under gravitational field[J]. Journal of Computational Physics, 2017, 332:475-491. doi: 10.1016/j.jcp.2016.12.022
    [36] Xiao T B, Xu K, Cai Q D, et al. An investigation of non-equilibrium heat transport in a gas system under external force field[J]. International Journal of Heat and Mass Transfer, 2018, 126:362-379. doi: 10.1016/j.ijheatmasstransfer.2018.05.035
    [37] Sun W J, Jiang S, Xu K. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations[J]. Journal of Computational Physics, 2015, 285:265-279. doi: 10.1016/j.jcp.2015.01.008
    [38] Sun W J, Jiang S, Xu K, et al. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations[J]. Journal of Computational Physics, 2015, 302:222-238. doi: 10.1016/j.jcp.2015.09.002
    [39] Sun W J, Jiang S, Xu K. An asymptotic preserving implicit unified gas kinetic scheme for frequency-dependent radiative transfer equations[J]. International Journal of Numerical Analysis and Modeling, 2018, 15(1/2):134-153.
    [40] Sun W J, Jiang S, Xu K. Multiscale radiative transfer in cylindrical coordinates[J]. Communications on Applied Mathematics and Computation, 2019, 1(1):117-139. doi: 10.1007/s42967-019-0007-x
    [41] Zhen Y X, Xiao M, Ni G X. Multi-scale kinetic scheme for the collisional Vlasov-Poisson system[J]. Computers & Fluids, 2016, 140:289-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=001971e5187c8669e29e31728513e692
    [42] Liu C, Xu K. A unified gas kinetic scheme for continuum and rarefied flows Ⅴ:Multiscale and multi-component plasma transport[J]. Communications in Computational Physics, 2017, 22(5):1175-1223. doi: 10.4208/cicp.OA-2017-0102
    [43] Pan D X, Zhong C W, Zhuo C S, et al. A unified gas kinetic scheme for transport and collision effects in plasma[J]. Applied Sciences, 2018, 8(5):746. doi: 10.3390/app8050746
    [44] 毛枚良, 江定武, 李锦, 等.气体动理学统一算法的隐式方法研究[J].力学学报, 2015, 47(5):822-829. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201505013

    Mao M L, Jiang D W, Li J, et al. Study on implicit implementation of the unified gas kinetic scheme[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5):822-829(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201505013
    [45] Zhu Y J, Zhong C W, Xu K. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes[J]. Journal of Computational Physics, 2016, 315:16-38. doi: 10.1016/j.jcp.2016.03.038
    [46] Zhu Y J, Zhong C W, Xu K. An implicit unified gas-kinetic scheme for unsteady flow in all Knudsen regimes[J]. Journal of Computational Physics, 2019, 386:190-217. doi: 10.1016/j.jcp.2019.01.033
    [47] Zhu Y J, Zhong C W, Xu K. Unified gas-kinetic scheme with multigrid convergence for rarefied flow study[J]. Physics of Fluids, 2017, 29(9):096102. doi: 10.1063/1.4994020
    [48] Chen S Z, Zhang C, Zhu L H, et al. A unified implicit scheme for kinetic model equations. Part I. Memory reduction technique[J]. Science Bulletin, 2017, 62(2):119-129. doi: 10.1016/j.scib.2016.12.010
    [49] Xiao T B, Xu K, Cai Q D. A velocity-space adaptive unified gas kinetic scheme for continuum and rarefied flows[J]. arXiv preprint arXiv: 1802.04972, 2018.
    [50] 江定武.基于模型方程解析解的气体动理学算法研究[D].绵阳: 中国空气动力研究与发展中心, 2016. http://cdmd.cnki.com.cn/Article/CDMD-90113-1017018831.htm

    Jiang D W. Study of the gas kinetic scheme based on the analytical solution of model equation[D]. Mianyang: China Aerodynamics Research and Development Center, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-90113-1017018831.htm
    [51] Li S Y, Li Q B, Fu S, et al. The high performance parallel algorithm for unified gas-kinetic scheme[C]. AIP Conference Proceedings, 2016, 1786(1): 180007.
    [52] 陆林生, 董超群, 李志辉.多相空间数值模拟并行化研究[J].计算机科学, 2003, 30(3):129-137. doi: 10.3969/j.issn.1002-137X.2003.03.037

    Lu L S, Dong C Q, Li Z H. Research on parallelization of multiphase space numerical simulation[J]. Computer Science, 2003, 30(3):129-137(in Chinese). doi: 10.3969/j.issn.1002-137X.2003.03.037
    [53] Li S Y, Li Q B, Fu S, et al. A unified gas-kinetic scheme for axisymmetric flow in all Knudsen number regimes[J]. Journal of Computational Physics, 2018, 366:144-169. doi: 10.1016/j.jcp.2018.04.004
    [54] Wang P, Zhu L H, Guo Z L, et al. A comparative study of LBE and DUGKS methods for nearly incompressible flows[J]. Communications in Computational Physics, 2015, 17(3):657-681. doi: 10.4208/cicp.240614.171014a
    [55] Bardow A, Karlin I V, Gusev A A. General characteristic-based algorithm for off-lattice Boltzmann simulations[J]. Europhysics Letters, 2006, 75(3):434-440. doi: 10.1209/epl/i2006-10138-1
    [56] Zhu L H, Wang P, Guo Z L. Performance evaluation of the general characteristics based off-lattice Boltzmann scheme and DUGKS for low speed continuum flows[J]. Journal of Computational Physics, 2017, 333:227-246. doi: 10.1016/j.jcp.2016.11.051
    [57] Zhu L H, Guo Z L, Xu K. Discrete unified gas kinetic scheme on unstructured meshes[J]. Computers & Fluids, 2016, 127:211-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e15d697b3c5333e5499634f723759864
    [58] Wu C, Shi B C, Shu C, et al. Third-order discrete unified gas kinetic scheme for continuum and rarefied flows:Low-speed isothermal case[J]. Physical Review E, 2018, 97(2):023306. doi: 10.1103/PhysRevE.97.023306
    [59] Wu C, Shi B C, Chai Z H, et al. Discrete unified gas kinetic scheme with a force term for incompressible fluid flows[J]. Computers & Mathematics with Applications, 2016, 71(12):2608-2629. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b1c718765ba1815af44ee789924288ed
    [60] Pan D X, Zhong C W, Zhuo C S. An implicit discrete unified gas-kinetic scheme for simulations of steady flow in all flow regimes[J]. Communications in Computational Physics, 2019, 25(5):1469-1495.
    [61] Yuan R F, Zhong C W. A conservative implicit scheme for steady state solutions of diatomic gas flow in all flow regimes[J]. arXiv preprint arXiv: 1810.13039, 2018.
    [62] Yuan R F, Zhong C W. A multi-prediction implicit scheme for steady state solutions of gas flow in all flow regimes[J]. arXiv preprint arXiv: 1905.06629, 2019.
    [63] Mittal R, Iaccarino G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37:239-261. doi: 10.1146/annurev.fluid.37.061903.175743
    [64] Li C, Wang L P. An immersed boundary-discrete unified gas kinetic scheme for simulating natural convection involving curved surfaces[J]. International Journal of Heat and Mass Transfer, 2018, 126:1059-1070. doi: 10.1016/j.ijheatmasstransfer.2018.04.166
    [65] Tao S, Chen B M, Yang X P, et al. Second-order accurate immersed boundary-discrete unified gas kinetic scheme for fluid-particle flows[J]. Computers & Fluids, 2018, 165:54-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2deab7ab04a6c0e26d6c2cf1d20ef244
    [66] Tao S, Zhang H L, Guo Z L, et al. A combined immersed boundary and discrete unified gas kinetic scheme for particle-fluid flows[J]. Journal of Computational Physics, 2018, 375:498-518. doi: 10.1016/j.jcp.2018.08.047
    [67] Tao S, He Q, Wang L, et al. A non-iterative direct-forcing immersed boundary method for thermal discrete unified gas kinetic scheme with Dirichlet boundary condi-tions[J]. International Journal of Heat and Mass Transfer, 2019, 137:476-488. doi: 10.1016/j.ijheatmasstransfer.2019.03.147
    [68] Wang P, Wang L P, Guo Z L. Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic sche-me methods for direct numerical simulation of decaying turbulent flows[J]. Physical Review E, 2016, 94(4):043304. doi: 10.1103/PhysRevE.94.043304
    [69] Bo Y T, Wang P, Guo Z L, et al. DUGKS simulations of three-dimensional Taylor-Green vortex flow and turbulent channel flow[J]. Computers & Fluids, 2017, 155:9-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0b218826c18d6c4e9104761e30fc657
    [70] Liu H T, Kong M C, Chen Q, et al. Coupled discrete unified gas kinetic scheme for the thermal compressible flows in all Knudsen number regimes[J]. Physical Review E, 2018, 98(5):053310. doi: 10.1103/PhysRevE.98.053310
    [71] Zhang Y, Zhu L H, Wang R J, et al. Discrete unified gas kinetic scheme for all Knudsen number flows. Ⅲ. Binary gas mixtures of Maxwell molecules[J]. Physical Review E, 2018, 97(5):053306. doi: 10.1103/PhysRevE.97.053306
    [72] Zhang Y, Zhu L H, Wang P, et al. Discrete unified gas kinetic scheme for flows of binary gas mixture based on the McCormack model[J]. Physics of Fluids, 2019, 31(1):017101. doi: 10.1063/1.5063846
    [73] Huo Y T, Rao Z H. The discrete unified gas kinetic scheme for solid-liquid phase change problem[J]. International Communications in Heat and Mass Transfer, 2018, 91:187-195. doi: 10.1016/j.icheatmasstransfer.2017.12.018
    [74] Zhang C H, Yang K, Guo Z L. A discrete unified gas-kinetic scheme for immiscible two-phase flows[J]. International Journal of Heat and Mass Transfer, 2018, 126:1326-1336. doi: 10.1016/j.ijheatmasstransfer.2018.06.016
    [75] Yang Z R, Zhong C W, Zhuo C S. Phase-field method based on discrete unified gas-kinetic scheme for large-density-ratio two-phase flows[J]. Physical Review E, 2019, 99(4):043302. doi: 10.1103/PhysRevE.99.043302
    [76] McCormack F J. Construction of linearized kinetic models for gaseous mixtures and molecular gases[J]. Physics of Fluids, 1973, 16(12):2095-2105. doi: 10.1063/1.1694272
    [77] Guo Z L, Xu K. Discrete unified gas kinetic scheme for multiscale heat transfer based on the phonon Boltzmann transport equation[J]. International Journal of Heat and Mass Transfer, 2016, 102:944-958. doi: 10.1016/j.ijheatmasstransfer.2016.06.088
    [78] Luo X P, Yi H L. A discrete unified gas kinetic scheme for phonon Boltzmann transport equation accounting for phonon dispersion and polarization[J]. International Journal of Heat and Mass Transfer, 2017, 114:970-980. doi: 10.1016/j.ijheatmasstransfer.2017.06.127
    [79] Zhang C, Guo Z L. Discrete unified gas kinetic scheme for multiscale heat transfer with arbitrary temperature difference[J]. International Journal of Heat and Mass Transfer, 2019, 134:1127-1136. doi: 10.1016/j.ijheatmasstransfer.2019.02.056
    [80] Liu H T, Cao Y, Chen Q, et al. A conserved discrete unified gas kinetic scheme for microchannel gas flows in all flow regimes[J]. Computers & Fluids, 2018, 167:313-323. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24e3f81c66683ec6bcfa0da08e77cace
    [81] Wang Y, Zhong C W. An ALE-type discrete unified gas kinetic scheme for low-speed continuum and rarefied flow simulations with moving boundaries[J]. arXiv preprint arXiv: 1906.01813, 2019.
    [82] Macrossan M N. A particle simulation method for the BGK equation[C]. AIP Conference Proceedings, 2001, 585(1): 426-433.
    [83] Gallis M A, Torczynski J R. The application of the BGK model in particle simulations[R]. AIAA 2000-2360, 2000.
    [84] Zhang J, John B, Pfeiffer M, et al. Particle-based hybrid and multiscale methods for nonequilibrium gas flows[J]. Advances in Aerodynamics, 2019, 1:12. doi: 10.1186/s42774-019-0014-7
    [85] Holway L H Jr. New statistical models for kinetic theory:methods of construction[J]. Physics of Fluids, 1966, 9(9):1658-1673. doi: 10.1063/1.1761920
    [86] Shakhov E M. Generalization of the Krook kinetic relaxation equation[J]. Fluid Dynamics, 1968, 3(5):95-96.
    [87] Chen S Z, Xu K, Cai Q D. A comparison and unification of ellipsoidal statistical and shakhov BGK models[J]. Advances in Applied Mathematics and Mechanics, 2015, 7(2):245-266. doi: 10.4208/aamm.2014.m559
    [88] Pfeiffer M. Particle-based fluid dynamics:comparison of different Bhatnagar-Gross-Krook models and the direct simulation Monte Carlo method for hypersonic flows[J]. Physics of Fluids, 2018, 30(10):106106. doi: 10.1063/1.5042016
    [89] Tumuklu O, Li Z, Levin D A. Particle ellipsoidal statistical Bhatnagar-Gross-Krook approach for simulation of hypersonic shocks[J]. AIAA Journal, 2016, 54(12):3701-3716. doi: 10.2514/1.J054837
    [90] Pfeiffer M. Extending the particle ellipsoidal statistical Bhatnagar-Gross-Krook method to diatomic molecules including quantized vibrational energies[J]. Physics of Fluids, 2018, 30(11):116103. doi: 10.1063/1.5054961
    [91] Fei F, Zhang J, Li J, et al. A Unified stochastic particle Bhatnagar-gross-Krook method for multiscale gas flows[J]. arXiv preprint arXiv: 1808.03801, 2018.
    [92] Liu C, Zhu Y J, Xu K. Unified gas-kinetic wave-particle methods I: continuum and rarefied gas flow[J]. arXiv preprint arXiv: 1811.07141, 2018.
    [93] Zhu Y J, Liu C, Zhong C W, et al. Unified gas-kinetic wave-particle methods. Ⅱ. Multiscale simulation on unstructured mesh[J]. Physics of Fluids, 2019, 31(6):067105. doi: 10.1063/1.5097645
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  105
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-20
  • 修回日期:  2019-07-02
  • 发布日期:  2019-07-20
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回