Flight Condition Achievement of Mach Number 8 in a New Shock Tunnel of CAAA and its Scramjet Experimental Investigation
-
摘要: 针对高Mach数超燃冲压发动机实验能力空缺问题,基于航天十一院新建的FD-21高能脉冲风洞,进行了Ma=8超燃飞行条件的模拟能力设计与调试,获得了总焓2.9 MJ/kg、总压11.01 MPa实验条件,实现了Ma=8、高度31 km飞行条件的风洞模拟.在此基础上,研发了匹配的氢燃料供应及喷注时序控制系统,设计了超燃冲压发动机模型,开展了超燃冲压发动机模型自由射流应用性风洞实验,获得了氢气燃料与空气、氮气超声速气流耦合流动作用下的实验模型壁面压力数据.在当量比近似一致条件下,空气来流对应的燃烧室壁面压力明显高于氮气来流情况,表明氢气在1 ms有效实验时间内完成了与超声速空气来流的混合、点火与燃烧,获得燃烧释热特性,确认了在FD-21高能脉冲风洞开展高Mach数超燃实验是切实可行的,为后续研究奠定了良好的基础.
-
关键词:
- 高能脉冲风洞 /
- Ma=8飞行条件复现 /
- 超燃实验 /
- 燃料供应系统 /
- 高Mach数自由射流实验
Abstract: Aimed at the lack of experimental conditions of high-Mach-number scramjet, the ability to simulate flight conditions of Mach number 8 was explored in FD-21 high-energy shock tunnel of CAAA. The simulation in total enthalpy of 2.9 MJ/kg and total pressure of 11.01 MPa was obtained, duplicating a flight Mach number of 8 at the altitude of 31 km. Furthermore, experimental techniques of hydrogen combustion were developed. A hydrogen fuel supply system with the time sequencer was equipped. A semi-free jet test model was designed to examine the possibility of scramjet test in FD-21 shock tunnel and check the performance of fuel supply system. Several commissioning tests were conducted at the Ma=8 simulation conditions. A comparison of wall pressure distributions between different test gas experiments with the almost identical hydrogen injection mass flow rate was made. It is shown that a pronounced pressure increment is observed in the downstream of the hydrogen injection location, while only a slight difference exists in the upstream of the hydrogen injection location. These phenomena indicate the achievement of hydrogen mixing, igniting and burning in supersonic airflow, which verifies the feasibility of scramjet test in FD-21 shock tunnel. The present achievements are helpful for experimental investigation of high-Mach-number scramjet. -
表 1 世界主要高焓脉冲风洞设备参数
Table 1. Simulation parameters of worldwide high-enthalpy impulse wind tunnels
wind tunnel affiliation driver technique driver tube driven tube nozzle exit diameter/m Vmax/
(km/s)Masimulated tef/ms hmax/
(MJ/kg)L/m D/m L/m D/m T4 UQ free-piston 26 0.229 10 0.076 0.388 ~5.5 4~10 ≥1 15 T5 Caltech 30 0.3 12 0.09 0.314 ~6.3 4~7 ≥1 20 HIEST JAXA 42 0.6 17 0.18 0.88 ~7 8~16 ≥2 25 HEG DLR 33 0.55 17 0.15 1.2 ~7 6~10 1~6 25 FD-21 CAAA 75 0.668 34 0.29 1.2/2.0 ~7 10~16 2~10 25 LENS Ⅰ GASL heated light gas 7.62 0.28 18.3 0.203 1.5 ~4.6 6~22 5~18 10 LENS Ⅱ 18.3 0.61 30.5 0.61 1.8 ~2.7 3~10 30~100 4 JF-12 IMCAS detonation 99 0.4 89 0.72 2.5 ~3 5~9 ~100 3.5 表 2 模拟弹道点Ma=8, H=31 km对应的风洞运行参数
Table 2. Operation parameters of FD-21 shock tunnel to simulate flight conditions of Ma=8 and H=31 km
compression tube with helium and argon shock tube with air ωHe ωAr P4i/kPa T4i/K P1/kPa T1/K 0.1 0.9 30 300 61 300 表 3 激波管上压电传感器安装位置
Table 3. Locations of piezoelectric sensors on shock tube
marks location/m S0 0.72 S1 4 S2 8 S4 16 S6 23.99 S7 27.99 S8 31.99 S9 33.19 S10 33.96 表 4 激波管末端入射激波Mach数及模拟总压
Table 4. Shock Mach number and simulated total pressure at the end of shock tube
test No. Mas between S7 and S8 error PtS10/MPa error 69 5.13 3.62% 9.64 -4.48% 70 4.90 -1.09% 9.96 -1.30% 71 4.90 -1.05% 10.54 4.44% 72 5.12 3.52% 10.49 3.95% 73 4.74 -4.26% 9.7 -3.88% 74 4.91 -0.73% 10.22 1.27% average 4.95 10.09 -
[1] Tsien H S, Beilock M. Heat source in a uniform flow[J]. Journal of Aeronautical Sciences, 1949, 16(12):756. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_611157fc15a22619f3d441257b991455 [2] Heiser W H, Pratt D T. Hypersonic airbreathing propul-sion[M]. Washington: American Institute of Aeronautics and Astronautics, Inc., 1994. [3] Curran E T, Murthy S N. Scramjet propulsion[M]. Reston:American Institute of Aeronautics and Astronau-tics, 2000. [4] 王振国, 梁剑寒, 丁猛, 等.高超声速飞行器动力系统研究进展[J].力学进展, 2009, 39(6):716-739. Wang Z G, Liang J H, Ding M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6):716-739(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jmsj201802253 [5] 蔡国飙, 徐大军.高超声速飞行器技术[M].北京:科学出版社, 2012. Cai G B, Xu D J. Hypersonic technology[M]. Beijing:The Science Publishing Company, 2012(in Chinese). [6] 俞刚, 范学军.超声速燃烧与高超声速推进[J].力学进展, 2013, 43(5):449-471.Yu G, Fan X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5):449-471(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201305001 [7] Lu F K, Marren D E. Advanced hypersonic test facilities[M]. Reston:Progress in Astronautics and Aeronautics, 2002:198. [8] Anderson G Y. Combustion in high-speed flow, chapter hypersonic combustion-status and directions[M]. ICASE/LAaRC Interdisciplinary Series in Science and Enginee-ring. Kluwer Academic Publishers, 1994. [9] Hodge J S, Harvin S F. Test capability and recent experiences in the NASA Langley 8-foot high temperature tunnel[R]. AIAA 2000-2646, 2000. [10] Kidd III F G, Narayanaswamy V, Danehy P M, et al. Characterization of the NASA Langley arc heated scramjet test facility using NO PLIF[R]. AIAA 2014-2652, 2014. [11] Hiraiwa T, Ito K, Sato S, et al. Recent progress in scramjet/combined cycle engines at JAXA, Kakuda space center[J]. Acta Astronautica, 2008, 63(5/6):565-574. [12] Dufrene A, Maclean M, Wadhams T, et al. Extension of LENS shock tunnel test times and lower Mach number capability[R]. AIAA 2015-2017, 2015. [13] Igra O, Seiler F. Experimental methods of shock wave research[M]. New York:Springer, 2016. [14] Stalker R J, Pall A, Mee D J, et al. Scramjets and shock tunnels-The Queensland experience[J]. Progress in Aerospace Sciences, 2005, 41(6):471-513. doi: 10.1016/j.paerosci.2005.08.002 [15] Yu H R. Oxyhydrogen combustion and detonation driven shock tube[J]. Acta Mechanica Sinica, 1999, 15(2):97-107. doi: 10.1007/BF02485874 [16] Jiang Z L, Yu H R. Experiments and development of long-test-duration hypervelocity detonation-driven shock tunnel (LHDst)[R]. AIAA 2014-1012, 2014. [17] 俞鸿儒.大幅度延长激波风洞试验时间[J].中国科学:物理学力学天文学, 2015, 45(9):094701. Yu H R. A big increase in shock tunnel test times[J]. Scientia Sinica Physica, Mechanica & Astronomica Astron, 2015, 45(9):094701(in Chinese). http://d.old.wanfangdata.com.cn/Conference/8678191 [18] Shen J M, Ma H D, Li C, et al. Initial measurements of a 2m Mach-10-free-piston shock tunnel at CAAA[C]. The 31st International Symposium on Shock Waves Nagoya, Japan, 2017. [19] Bi Z X, Zhang B B, Chen X, et al. Experiments and computations on the compression process in the free piston shock tunnel[C]. 5th International Conference on Experimental Fluid Mechanics (ICEFM 2018 Munich), Munich, Germany, 2018. [20] Robinson M J, Mee D J, Paull A. Scramjet lift, thrust and pitching-moment characteristics measured in a shock tunnel[J]. Journal of Propulsion and Power, 2006, 22(1):85-95. doi: 10.2514/1.15978 [21] McGilvray M, Kirchhartz R, Jazra T. Comparison of Mach 10 scramjet measurements from different impulse facilities[J]. AIAA Journal, 2010, 48(8):1647-1651. doi: 10.2514/1.J050025 [22] McGilvray M, Morgan R G, Jacobs P A. Scramjet experiments in an expansion tunnel:evaluated using a quasi-steady analysis technique[J]. AIAA Journal, 2010, 48(8):1635-1646. doi: 10.2514/1.J050024 [23] Takahashi M, Sunami T, Hideyuki T, et al. Performance characteristics of a scramjet engine at Mach 10 to 15 flight condition[R]. AIAA 2005-3350, 2005. [24] Itoh K, Ueda S, Tanno H, et al. Hypersonic aerothermodynamic and scramjet research using high enthalpy shock tunnel[J]. Shock Waves, 2002, 12(2):93-98. doi: 10.1007/s00193-002-0147-0 [25] Takahashi M, Komuro T, Sato K, et al. Performance characteristics of scramjet engine with different combustor shapes at hypervelocity condition over Mach 10 flight[R]. AIAA 2007-5395, 2007. [26] Laurence S J, Karl S, Schramm M J, et al. Transient fluid-combustion phenomena in a model scramjet[J]. Journal of Fluid Mechanics, 2013, 722:85-120. doi: 10.1017/jfm.2013.56 [27] Schramm M J, Hannemann K, Karl S, et al. Ground testing synthesis of the LAPCAT II small scale flight experiment configuration scramjet flow path[R]. AIAA 2015-3627, 2015. [28] Hannemann K, Schramm J M, Karl S, et al. Enhance-ment of free flight force measurement technique for scramjet engine shock tunnel testing[R]. AIAA 2017-2235, 2017. [29] Rogers R C, Hass N E. Scramjet development tests supporting the Mach 10 flight of the X-43[R]. AIAA 2005-3351, 2005. [30] Ferlemann S M, McClinton C R, Rock K E, el al. Hyper-X Mach 7 Scramjet design, ground test and flight results[R]. AIAA 2005-2322, 2005. [31] Ferlemann P G. Hyper-X Mach 10 scramjet preflight predictions and flight data[R]. AIAA 2005-3352, 2005. [32] 王培勇, 陈明, 邢菲, 等. Hyshot超燃冲压发动机的CFD数值模模拟[J].航空动力学报, 2014, 29(5):1020-1028. Wang P Y, Chen M, Xing F, et al. CFD numerical simulation of Hyshot scramjet[J]. Journal of Aerospace Power, 2014, 29(5):1020-1028(in Chinese). http://d.old.wanfangdata.com.cn/Thesis/Y2343979 [33] 周建兴, 汪颖.高马赫数超燃冲压发动机性能数值研究[J].推进技术, 2014, 35(4):433-441. Zhou J X, Wang Y. Numerical investigation on performance of a high Mach number Scramjet[J]. Journal of Propulsion Technology, 2014, 35(4):433-441(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201404001 [34] 张时空, 李江, 黄志伟, 等.高马赫数来流超燃冲压发动机燃烧流场分析[J].宇航学报, 2017, 38(1):80-88. Zhang S, Li J, Huang Z W, et al. Combustion flow field analysis of a scramjet engine[J]. Journal of Astronautics, 2017, 38(1):80-88(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhxb201701011 [35] 钟萍, 孙宗祥, 傅邦杰, 等.高超声速流动模拟需求及地面试验能力分析[J].飞航导弹, 2012(3):20-26. Zhong P, Sun Z X, Fu B J, et al. Simulation requirements and experimental techniques level of hypersonic ground facilities[J]. Journal of Aerial Missiles, 2012(3):20-26(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fhdd201203013 [36] 朱浩, 江海南, 张冰冰.自由活塞激波风洞的入射激波衰减[J].航空学报, 2017, 38(12):39-47.Zhu H, Jiang H N, Zhang B B. Attenuation of incident shock waves in free piston shock tunnels[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):39-47(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201712004 [37] Li C, Sun R M, Wang Y D, et al. Reliability improvement of the piston compressor in FD-21 free-piston shock tunnel[C]. 5th International Conference on Experimental Fluid Mechanics, Munich, Germany, 2018. [38] Zhang B B, Zhu H, Chen X, et al. Experimental study of the compression process in a free piston shock tunnel FD-21[C]. Proceedings of the 8th International Confer-ence on Fluid Mechanics, Sendai: Tohoku Universi-ty, 2018. [39] 孙日明, 李辰, 陈星.高能脉冲风洞自由活塞速度测量系统[C]. CSTAM2018-P18-B04, 第十八届全国激波与激波管学术会议, 北京: 中科院力学所, 2018.Sun R M, Li C, Chen X. Velocity measure system of free-piston in FD-21 free-piston shock tunnel[C]. The 18th National Conference of Shock Wave and Shock Tube, Beijing: IMCAS, 2018(in Chinese). [40] 易翔宇, 陈星, 毕志献, 等.自由活塞激波风洞压缩管-激波管流动分析及4000 K状态调试[C].首届中国空气动力学大会, 绵阳: 中国空气动力研究与发展中心, 2018.Yi X Y, Chen X, Bi Z X, et al. Flow characteristics of compression and shock tubes in the free-piston driven shock tunnel and commissioning of 4000 K simulation conditions[C]. The 1st Conference of China Aerodyna-mics, Mianyang: CARDC, 2018(in Chinese). [41] Schranmm J M, Karl S, Hannemann K, et al. Ground testing of the Hyshot II scramjet configuration in HEG[R]. AIAA 2008-2547, 2008. [42] Laurence S J, Karl S, Schramm M J, et al. Transient fluid-combustion phenomena in a model scramjet[J]. Jour-nal of Fluid Mechanics, 2013, 722:85-120. doi: 10.1017/jfm.2013.56 [43] Tannehill J C, Mohling R A. Development of equilibrium air computer programs suitable for numerical computation using time-dependent or shock-capturing methods[M]. For sale by the National Technical Information Service, 1972. [44] Tannehill J C, Mugge P H. Improved curve fits for the thermodynamic properties of equilibrium air suitable for numerical computation using time-dependent or shock-capturing methods[R]. NSAS Report CR-2470, 1974. [45] Rogers R C, Weidner E H. Scramjet fuel-air mixing establishment in a pulse facility[J]. Journal of Propulsion and Power, 1993, 9(1):127-133. doi: 10.2514/3.11494 -