主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

基于N-S方程的支撑机翼高亚声速气动外型设计

Aerodynamic Design of Strut Braced Wing Under High Subsonic Condition Based on N-S Equations

  • 摘要: 相对常规悬臂梁布局飞机,支撑机翼飞机允许有更大的展弦比、更薄的机翼及较小的后掠角,从而可以减小诱导阻力、波阻,并增加层流范围,是未来飞机的一个可供选择方案.文章基于N-S方程对高亚声速支撑机翼构型进行了气动外型设计,在巡航Mach数为0.7,设计升力系数为0.6的条件下,支撑机翼构型相对无支撑构型升阻比仅减小6.3%,而初始无支撑翼身组合体构型相较常规悬臂梁翼身组合体构型最大升阻比提高了约35%,设计结果表明支撑机翼构型是可明显提高飞行性能的未来高亚声速飞机的一种新型外型.文章也对支撑外型、位置参数及机翼内翼下翼面外型修型对支撑机翼构型的干扰影响进行了研究,研究结果表明:支撑上翼面外型、支撑弦长、相对厚度、展向位置、扭转角分布及机翼下翼面外型对支撑机翼构型气动影响较大.

     

    Abstract: Strut braced wing (SBW) configuration enables planes to have larger aspect ratio, smaller wing thickness and sweep angle compared to a traditional cantilever wing, leading to lower induced drag, lower wave drag and larger laminar flow region on the wing. This makes SBW a potential choice for new configuration airplanes in the future. This paper focused on the aerodynamic design of SBW under high subsonic condition based on N-S(Navier-Stokes) equations. The result shows that under the conditions of cruising Mach number 0.7 and design lift coefficient 0.6, the non-strut braced wing configuration causes a 35% increment of the lift-to-drag ratio to conventional cantilever wing-body combination configuration and the strut only causes a 6.3% decrement of the lift-to-drag ratio to the wing-body configuration. The results illustrate that the SBW configuration is one of the candidates of future transonic transports which can provide significant performance enhancement over existing transonic transport concept. The effects of the shape and position parameters and the shape modification of the inner and lower wing on the strut braced wing were also studied. The result shows that the upper shape, chord length, relative thickness, spanwise position, torsion angle distribution of the strut and the shape of the lower wing have a great influence on the aerodynamics of the strut braced wing configuration.

     

/

返回文章
返回