主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂构型前缘疏导热防护技术

艾邦成 陈思员 韩海涛 胡龙飞 初敏 曲伟 俞继军

艾邦成, 陈思员, 韩海涛, 胡龙飞, 初敏, 曲伟, 俞继军. 复杂构型前缘疏导热防护技术[J]. 气体物理, 2019, 4(1): 1-7. doi: 10.19527/j.cnki.2096-1642.0734
引用本文: 艾邦成, 陈思员, 韩海涛, 胡龙飞, 初敏, 曲伟, 俞继军. 复杂构型前缘疏导热防护技术[J]. 气体物理, 2019, 4(1): 1-7. doi: 10.19527/j.cnki.2096-1642.0734
AI Bang-cheng, CHEN Si-yuan, HAN Hai-tao, HU Long-fei, CHU Min, QU Wei, YU Ji-jun. Complex Dredging Thermal Protection Structure for Leading Edge[J]. PHYSICS OF GASES, 2019, 4(1): 1-7. doi: 10.19527/j.cnki.2096-1642.0734
Citation: AI Bang-cheng, CHEN Si-yuan, HAN Hai-tao, HU Long-fei, CHU Min, QU Wei, YU Ji-jun. Complex Dredging Thermal Protection Structure for Leading Edge[J]. PHYSICS OF GASES, 2019, 4(1): 1-7. doi: 10.19527/j.cnki.2096-1642.0734

复杂构型前缘疏导热防护技术

doi: 10.19527/j.cnki.2096-1642.0734
基金项目: 航天十一院自主创新研发项目:创新气动布局低成本飞行试验研究
详细信息
    作者简介:

    艾邦成(1973-)男, 研究员, 主要研究方向为气动加热与热防护技术.E-mail:aimen011@163.com

  • 中图分类号: V414.9

Complex Dredging Thermal Protection Structure for Leading Edge

  • 摘要: 针对前缘驻点区热流密度高、热流梯度大的特点,基于疏导式热防护思想,研制了一体化疏导式热防护前缘结构.根据力热承载要求,设计了一体化薄壁结构方案,内部充装碱金属工质,在气动加热条件下形成工质相变及输运的热管式闭式循环,实现驻点区热量的快速疏散.通过结构封装、热管充装等工艺流程,实现结构样件,最终通过了飞行试验验证.结果表明,疏导结构启动时间约为94.5 s,疏导效率达到23.4%.

     

  • 图  1  RCC翼前缘结构内嵌Mo-Re热管[8]

    Figure  1.  Mo-Re heat pipe embedded in a RCC leading edge[8]

    图  2  翼前缘热扩散结构示意图[8]

    Figure  2.  Leading edge heat spreader concept[8]

    图  3  疏导前缘防热原理[2]

    Figure  3.  Concept of dredging thermal protection for leading edge[2]

    图  4  疏导件结构

    Figure  4.  Structure of dredging thermal protection leading edge

    图  5  疏导结构风洞试验件照片

    Figure  5.  Dredging thermal protection structure for leading edge for wind tunnel test

    图  6  疏导前缘石英灯加热试验

    Figure  6.  Quartz lamp heating test of dredging thermal protection leading edge

    图  7  疏导前缘电弧风洞加热试验

    Figure  7.  Wind tunnel heating test of dredging thermal protection leading edge

    图  8  疏导前缘石英灯加热试验温度响应

    Figure  8.  Dredging thermal protection leading edge temperature variation of quartz lamp heating test

    图  9  疏导前缘结构件测点布置

    Figure  9.  Temperature test points of dredging thermal protection leading edge

    图  10  疏导结构尾盖板飞行试验温度变化

    Figure  10.  Temperature variations of back plate of dredging thermal protection structure(DTPS) in flight test

    图  11  疏导结构飞行试验温度变化与非疏导结构风洞试验温度变化对比

    Figure  11.  Comparisons of temperature variations for dredging thermal protection structure(DTPS) in flight test and conventional structure(N-DTPS) in wind tunnel heating test

    图  12  飞行试验疏导结构尾盖板温升速率

    Figure  12.  Temperature increase rates of back plate of dredging thermal protection structure in flight test

    图  13  电弧风洞试验非疏导结构尾盖板温升速率

    Figure  13.  Temperature increase rates of back plate of conventional structure in wind tunnel test

    图  14  理论预测尾盖板温度响应与飞行试验值对比

    Figure  14.  Comparisons of temperature variation of back plate from estimation and flight test

  • [1] Silverstein C C. A feasibility study of the heat pipe cooled leading edges for hypersonic cruise aircraft[R]. NASA CR-1857, 1971.
    [2] Glass D E. Heat-pipe-cooled leading edges for hypersonic Vehicles[R]. NASA 20080014285, 2006.
    [3] Colwell G T. Cooling hypersonic vehicle structures[C]. Proceedings of 7th International Heat pipe Conference, Minsk, 1990.
    [4] 李锋, 艾邦成, 姜贵庆.一种热平衡等温机制的新型热防护及相关技术[J].宇航学报, 2013, 34(12):1644-1650. doi: 10.3873/j.issn.1000-1328.2013.12.015

    Li F, Ai B C, Jiang G Q.A new thermal protection technology based on heat-balance isothermal mechanism[J]. Journal of Astronautics, 2013, 34(12):1644-1650(in Chinese). doi: 10.3873/j.issn.1000-1328.2013.12.015
    [5] 李锋, 等.疏导式热防护[M].北京:中国宇航出版社, 2017.

    Li F, et al. Dredging thermal protection structures[M]. Beijing:China Aerospace Press, 2017(in Chinese).
    [6] 杨亚政, 李松年, 杨嘉陵.高超音速飞行器及其关键技术简论[J].力学进展, 2007, 37(4):537-550. doi: 10.3321/j.issn:1000-0992.2007.04.004

    Yang Y Z, Li S N, Yang J L. A review on hypersonic vehicles and key technologies[J]. Advances in Mechan-ics, 2007, 37(4):537-550(in Chinese). doi: 10.3321/j.issn:1000-0992.2007.04.004
    [7] Boman B, Elias T. Tests of a Sodium/Hastelloy X wing leading edge heat pipe for hypersonic vehicles[C]. AIAA/ASME 5th Joint Thermophysics and Heat Transfer Conference, Seattle: 1990.
    [8] Glass D E, Camarda C J, Merrigan M A, et al. Fabrication and testing of Mo-Re heat pipes embedded in carbon/carbon[J]. Journal of Spacecraft and Rockets, 1999, 36(1):79-86. doi: 10.2514/2.3436
    [9] Kasen S D. Thermal management at hypersonic leading edges[D]. Charlottesville: University of Virginia, 2013.
    [10] 姜贵庆.疏导式热防护若干问题的探讨[C].北京: 飞行器热环境与热防护研讨会, 2006: 5.

    Jiang G Q. Research on dredging thermal protection[C]. Beijing: Symposium on Thermal Environments and Ther-mal Protection Structures, 2006: 5(in Chinese).
    [11] 姜贵庆, 艾邦成, 俞继军, 等.高温热管在疏导热防护技术中的应用[C].威海: 第十一届全国热管会议论文集, 2008: 72-78.

    Jiang G Q, Ai B C, Yu J J, et al. Application of high temperature heat pipe in leading thermal protections[C].Weihai: Proceedings of 11th China Heat pipe Conference, 2008: 72-78(in Chinese).
    [12] Ai B C, Chen S Y, Yu J J, et al. Fabrication of Lithium/C-103 alloy heat pipes for sharp leading edge cooling[J]. Heat and Mass Transfer, 2018, 54(5):1359-1366. doi: 10.1007/s00231-017-2236-8
    [13] Lu Q, Han H T, Hu L F, et al. Preparation and testing of nickel-based superalloy/sodium heat pipes[J]. Heat and Mass Transfer, 2017, 53(11):3391-3397. doi: 10.1007/s00231-017-2105-5
    [14] 韩海涛, 邓代英, 陈思员, 等.尖前缘一体化高温热管结构设计与分析[J].机械强度, 2013, 35(1):48-52. http://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201301010.htm

    Han H T, Deng D Y, Chen S Y, et al. Design and structural analysis of sharp leading edge integrated with heat pipe[J]. Journal of Mechanical Strength, 2013, 35(1):48-52(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201301010.htm
    [15] 李同起, 胡子君.定向高导热碳材料及其热管理结构设计[J].宇航材料工艺, 2007, 37(1):16-18, 22. doi: 10.3969/j.issn.1007-2330.2007.01.004

    Li T Q, Hu Z J. Carbon materials with high directional thermal conductivity and their structure design of thermal management system[J]. Aerospace Materials & Technology, 2007, 37(1):16-18, 22(in Chinese). doi: 10.3969/j.issn.1007-2330.2007.01.004
    [16] 吴国庭.统一热管理的疏导式防热系统概念研究[J].航天器工程, 2009, 18(4):13-19. doi: 10.3969/j.issn.1673-8748.2009.04.003

    Wu G T. Conceptual research of leading thermal protection system with unified heat management[J]. Spacecraft Engineering, 2009, 18(4):13-19(in Chinese). doi: 10.3969/j.issn.1673-8748.2009.04.003
    [17] 孙健, 刘伟强.疏导式结构在头锥热防护中的应用[J].物理学报, 2012, 61(17):174401. doi: 10.7498/aps.61.174401

    Sun J, Liu W Q. Application of leading structure on thermal protection of nosetip[J]. Acta Physica Sinica, 2012, 61(17):174401(in Chinese). doi: 10.7498/aps.61.174401
    [18] 孙健, 刘伟强.尖化前缘高导热材料防热分析[J].航空学报, 2011, 32(9):1622-1628. http://d.old.wanfangdata.com.cn/Periodical/hkxb201109007

    Sun J, Liu W Q. Analysis of sharp leading-edge thermal protection of high thermal conductivity materials[J]. Acta Aeronautica ET Astronautica Sinica, 2011, 32(9):1622-1628(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201109007
    [19] 刘冬欢, 郑小平, 王飞, 等.内置高温热管C/C复合材料热防护结构热力耦合机制[J].复合材料学报, 2010, 27(3):43-49. http://www.cnki.com.cn/Article/CJFDTotal-FUHE201003006.htm

    Liu D H, Zheng X P, Wang F, et al. Mechanism of thermomechanical coupling of high temperature heat pipe cooled C/C composite material thermal protection struc-ture[J]. Acta Materiae Compositae Sinica, 2010, 27(3):43-49(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-FUHE201003006.htm
  • 加载中
图(14)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  53
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 修回日期:  2019-01-05
  • 发布日期:  2019-01-20
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回